House Stats
H446-03 NEA

Candidate Name - Morgan Rhys Thomas
Centre Name - Christleton High School
Candidate Number - 1185
Centre Number - 40329

June 2022



Contents



Chapter 1

Analysis

1.1 Problem Identification

Housing markets are a complex and convoluted system with hidden pat-
terns which are hard to visualise and discover without using complex and
expensive software. This means that investing in property is arduous for the
average person as compared to large property developers who have the funds
for this software and the economic know-how to make informed decisions.

Although house sales data is public there are few too many solutions
that let you visualise the data and analyse it. The best solution that exists
as of right now is provided by the Land Registry and is formatted in a
monthly report. These reports have very little analysis and only show how the
current month performed to the previous year’s month with basic statistical
operations performed and only focus on England & Wales.

1.2 Computational Methods

The main objective of my application can be broken down into lots of
smaller problems to be solved independently. This will make the application
a lot more feasible and efficient to programme rather than tackling it as one
monolithic problem. These smaller tasks will be:

e Store house data in a database

e Query that data via a programming language



e Process the data and apply statistical operations to it

e Present this data in a web interface for the user

The data required for this project is published by the Land Registry as
one large file and a monthly file containing amendments and additions to be
made to the original data. This will need to be queried so that statistical
operations can be performed on specific areas or time frames and amended
so that new data can be added to keep it as up-to-date as possible to provide
the best user experience. These queries will also need to be performed in a
sub-second time to provide the best experience which would not be possible
without a database running on a computer.

One problem that will be appropriate to be solved by computational
methods will be performing statistical operations on the data. A data pro-
cessing platform will be required as it will often be processing 100,000s if not
millions of data points. These calculations would not be able to be performed
manually as the sheer time it would take and would often be impossible to
be done via analogue methods. This will need to be performed in a minimal
amount of time to produce the best user experience which will in turn allow
the most up-to-date data to be used as it won’t need to be preprocessed and
instead can be processed upon request.

A data ingest system will also need to be done computationally as each
month 100,000s of new data points are released and will need to be added
efficiently to allow people to perform analysis on the most up-to-date data.
This will require parallel processing to optimise the process as otherwise, it
will take an inordinate amount of time to update the data. It will also require
validation of the data and will be most suited to a computational solution as
it requires a great deal of accuracy. If this were to be carried out by a human
there would be room for lots of error when inserting large amounts of data.

This will also require a graphical user interface to abstract the complex
calculations so that the user can view and understand the statistics derived
from the dataset. These will be large numbers and a lot of data that will
require graphics to show patterns and correlations. These would not suit a
text interface or outputting to a file as the users would not be able to make
full use of the results due to the unintuitive interface.



1.3 Stakeholders

The demographic this programme would be aimed at is real estate agents,
property developers, surveyors & solicitors. Another essential demographic
will be the average citizen who is looking into buying or selling a home. For
the average person, the programme will be able to provide a simple tool
which will be easy to navigate with limited functionality. Professionals will
have access to more advanced tools to allow them to perform more advanced
analyses. This will require the website to be intuitive to use as people in these
industries may not be as computer literate. It will also need to provide highly
accurate data as it will often be used in applications like house valuations,
legal proceedings & investment decisions.

Often individual property investors looking to flip houses will end up
looking on sites like Rightmove trying to find houses in their budget and
not taking into account any of the economic backgrounds of that area. This
can lead to poor investment decisions and end up with them losing a lot of
money. When compared to commercial investors these individuals do simply
not have the resources to put into analysing data themselves and investing
money into tools to view that data. My application will allow them to
analyse data and make decisions via intuitive graphs and a simple interface
for free. These scenarios will lend themselves to my application as they will
allow the average Joe to analyse residential areas simply and effectively. The
stakeholder for this demographic is Liam Carter who is experienced with
property investment to either flip or rent out.

Customers of real estate agents often just want an idea of their house
value to decide whether they want to sell it or not. Nowadays when valuing
a house you need to have surveyors come around to gather data and come
back after a prolonged period with a price. At this point, the customer
could have changed their mind or moved to a different realtor. With my
application, they’ll be able to get back to the customer within a few minutes
with a rough estimate of a price and save the arduous surveying for another
time not leaving the customer to have second thoughts. Allowing them to
retain customers and optimise their pricing workflow as it can be used as
another data point in their final calculation of the price. The stakeholder for
this demographic is Sophia Bennett who has been in the real estate business
for 25 years and currently works for a letting agency.



1.4 Research

1.4.1 Land Registry Price Paid Data App
https://landregistry.data.gov.uk/app/ppd

HM Land Registry Open Data
UK House Price Index Price Paid Data Standard-reports SPARQL query

help
Step 7 of 7
Summary
The report options you have selected are:

« report type is banded prices change...
« area type is pcDistrict change...

» postcode district is CH64 change...

« do not aggregate data change...

« dates are year to date change...

« age of property is any change...

Generate report

Found a problem or have a suggestion? Your feedback & will help us to improve this service.

The Land Registry has created a basic application that allows users to
search the data and generate reports. The Land Registry are a government
agency that provides and maintains the price-paid data. This site aims to
allow users to search for previous sales and to analyse historical data via
reports that are exported as an excel sheet. These reports are very limited
in what they can show and are very slow to process often taking at least an
hour to process.

You can create ‘Standard Reports’ which allow you to see the aggregated
prices and sales volume of an area grouped by house type or overall. These
are created by a web interface where the user can pick where they want the
data to be localised and the date range for the data to be gathered from. It
also gives the user the option to display banded prices or the average prices
of that area. The data can be localised further by grouping it via a different



sub-category of the address for the chosen region. These reports are quite
basic in the data they provide and leave a lot of the data to be manipulated
by the end user. They also often take a long time to be created when taking
into account their simplicity. When testing the reports took from 30-120
minutes.

Another feature of this application is the ability to search historical house
sales going back to 1995 when the Housing Regulations were introduced
requiring the price of property sales to be logged with the Land Registry.
This can be searched using several parameters including:

e Building Number
e Street

e Town or City
e District

e County

e Locality

e Postcode

e Property Type
e New Build

e Estate Type

e Price

e Date

Parts I Can Apply to My Solution

The PPD(Price Paid Data) applications have a lot of the features I would
like in my application like the ability to create reports and search historical
data but these features lack the speed and efficiency I would like from my
application. It also uses an effective user interface which allows for simple
usage and interaction which is what I'm aiming for with my applications as
I want it to be used by people ranging from inexperienced members of the
public to real estate agents with years of experience.

6



1.4.2 Rightmove

https://www.rightmove.co.uk/house-prices.html

rightmove Q Buy Rent House Prices Find Agent Commercial Inspire Overseas

UK sold prices of properties

e.g.'School Road’, 'NW3',"NW3 5TY" or "York'

Want to find out what homes actually sold for? Browse House Price Areas
Looking for a home in your dream location but not quite sure you can believe the prices? Maybe you LT
are just curious about how much the house next door really sold for?
J Y South East
Rightmove can help! We bring the latest Sold House Price Information to your computer, straight from
the Land Registry and the Registers Of Scotland. Our house prices checker teol is on hand. London House Prices »
Simply enter the postcode of the area you are interested in above, and we will give you the low down )
on average and individual sold prices since May 2000. England House Prices »
L Wales House Prices » a

Rightmove is the UK’s number one property portal and has been trad-
ing since 2000 and is now an FTSE 100 company hosting 90% of all property
listings on their site. This gives them a wealth of data on current property
sales which they can combine with previous sales data from the PPD dataset
along with many other datasets they have access to due to their corporate
stature. Combined these make up their subsidiary Rightmove Data Services.
Here they provide numerous services:

e Market Intelligence Centre

e Bespoke Data Analysis

Development Insights Reports

Surveyors Comparable Tool

Automated Valuation Model

Property Risk Alerts



Market Intelligence Centre

The market intelligence centre is an application that visualises and shows
the user’s current market data, current property prices, supply & demand
data. Combined this provides a bespoke suite of data visualisations and
figures which cannot be found anywhere else due to their monopolistic-like
company. All this data can be derived from a specific area and then filtered
via dates and property types to then be exported via CSVs or PDF reports.

Bespoke Data Analystics
Asking prices, Number of price reductions,

Size of price reductions, Rental yields, Land
Registry, Registers of Scotland

Sold prices T New listings, Available stock, Sales agreed

Locati ) : )
ecation Time on market, Unique enquirers, Calls,

Emails

EPC, Planning data, Listed buildings

Flood risk, HS2, Climate change, Fracking

For this, they work closely with their client to design a detailed report
for their requirements giving the client control of what they want out of it like
the date ranges, asking prices, number of price reductions, size of reductions,
rental yields and data from the Land Registry & Registers of Scotland. All
this data is combined and aggregated into a bespoke report that can be
published on a one-time basis or periodically over some time.

Automated Valuation Model

Rightmove’s AMV is used by over 400,000 properties each month to value
properties using its proprietary data and data provided by the Land Registry
and Registers of Scotland which is accompanied by a confidence score. This
is done via an interactive web interface or over an API allowing companies to

8



create their interface for in-house software or integrate it with their current
infrastructure.

1.4.3 Parts I Can Apply to My Solution

Rightmove has a lot of services with very similar features to what I aim
for my solution to have but are even more advanced as they have access to
lots more data. However, their use of GUI and an API to allow clients to
interact with their systems is exactly what I plan to do with my software
allowing users with basic skills to use it and for people to integrate it with
their tools. They also have high-speed data aggregation which is also what
[ aim for my platform to have as a slow programme would result in a bad
user experience. Unfortunately, their system is locked behind a paywall and
is only accessible by incorporated businesses which is what I want to avoid
with my software as I want everyone to be able to use it.

1.4.4 Questionaire
Liam Carter’s Q&A

e How much research do you do before investing in a property?
"I tend to invest in the area around me as I know that best so I only have to do

limited research.”

e What do you use to look at properties to invest in?
”The main platform I use is Rightmove and I occasionally use Purple Bricks when

I can’t find what I want on Rightmove.”

e What type of apps do you prefer web, desktop or mobile?
”T'm often on the move looking at houses so I tend to be using either my phone or
a laptop so a website would be most suited to allowing me to access it on the move

with all my devices.”

e What features would you like to see?
”1 only tend to buy houses near me as they are easier to manage and maintain so
a function that would allow me to localise the analyses. I would also like to see the
historical prices for areas and see how they compare so I can see what areas have

prices on the rise.”



e What issues do you have with current solutions?
” A lot of the services are aimed at companies so often have very expensive licences
or simply won’t give the time of day to an individual investor leaving me high and
dry as there are no other options except the Land Registries PPD app but that’s

very limited in its functionality and takes a while to complete the aggregation.”

e Would you be willing to pay for a service to analyse the hous-
ing market?
”Yes most certainly as long as it was within budget obviously unlike those other
commercially aimed services but it would have to meet all my requirements which
are a simple interface, lots of customizability when it comes to filtering and aggre-
gating the data, a quick interface so that I'm not stuck there waiting for my results

wasting time and accessible wherever I am with an internet connection.”

Sophia Bennett’s Q& A

e What process do you use for the valuation of a property?
”"Well first our agents will have background knowledge of the area the property
is in and will do some more research before even entering the property like local
amenities, schools and shops nearby. Once that is all complete they’ll come and see
your property. They’ll walk through the property and take extensive notes along
with measurements and look for key selling points like original fittings and new
heating systems. After this, they’ll ask the buyer a lot of questions ranging from
whether they need the house to be sold quickly or any other information they could
offer up to help give us an idea of the price. Once all of this is done they’ll go back
to the office and combine their notes with their other research and come back to

the owner with a valuation.”

e How long does it take to value a house?
"For a firm with our expertise and experience the actual valuation process is quite
quick and can be done in a few hours overall but the main issue is fitting people in

with appointments.”

e Do you know of any solutions for analysing the housing mar-
ket?
”Yes we use some ourselves for doing research on a property before going to the
in-person part of the valuation. The system we use is provided by Rightmove but

is very costly as it has a yearly licence fee.”

10



e What would be your preferred method of accessing software?
” A lot of our staff are often out and about on properties or travelling between them
so they will often be using either laptops or iPads and in the worst-case scenario
their phone so all the software we use is web-based allowing them to access it from

anywhere.”

1.5 Features

My solution will consist of a web-based application accessible via any
internet-connected device with a web browser allowing most people to ac-
cess it. It will have a page for searching historical sales and viewing data
about a house whilst also comparing the prices to the local average and allow-
ing analyses to be done on individual houses. There will also be a section for
analysing larger areas which could be defined by a postcode or a county and
anything in between. These areas can then be compared with one another
providing greater insight. This data will be shown via graphs and interactive
maps to allow anyone to understand the data. It will also have an admin
panel accessible via authentication to allow for new sales data to be uploaded
and see common queries along with other analytical statistics.

1.6 Limitations

The major limitation of my solution is that I will not have access to in-
dividual data on the houses like the number of rooms and the acreage of
the plot it lies on. This could lead to incorrect predictions as my algorithm
will be ignorant to the fact that a house was sold for £50,000 as it had a
pool rather than the value of that area going up. This can be combated by
analysing areas with a greater volume of houses as they would be ruled out
as anomalous but this would not work in all scenarios. Gaining access to
this data would also pose a great challenge as it would require scraping data
from other sites like Rightmove which would be computationally and time
intensive.

Another issue would be getting up-to-date and accurate data. Although
the PPD dataset is perfectly acceptable it only gets updated once a month
and is always a month or two behind what is happening right now. This
could cause discrepancies in the data shown to the user and would also not

11



allow them to get the full insight as there could’ve been a drastic shift in the
past few months. Luckily the housing market is not very volatile most of the
time but there have been times when it changed overnight and would make
the statistics provided completely irrelevant. Unfortunately, there is no way
to mitigate this issue as the Land Registry is the only provider of this dataset
and doesn’t seem to be changing its upload schedule any time soon.

1.7 Requirements

1.7.1 Software

Linux operating system - This will be required to run the SQL
server, Dask and the web server

Python interpreter - The project will be written in mostly python
so this will be required to run it

Web browser - This will be required by the users to access the pro-
gramme and use it

PostgreSQL server - This will be used as the database to store the
sales data and query It

Dask - This will be used for performing statistical operations on large
amounts of data

NGINX - This will be used to host the website and serve the pages
to the users

1.7.2 Hardware

Server - This will be required to run the database, web server and
data aggregator. It will require at least an 8-core processor to run
all the services and 16GB of RAM to hold the dataset in memory for
performing the statistical operations and an SSD as an HDD would not
be capable of the IOPS required to run a database

12



1.8 Swuccess Criteria

Criteria

Evidence

Insert the PPD data into an SQL
database in 3NF

Screenshot of a query from the
database showing sales data

Query data from the database
using Python

Showing the code and the terminal
output showing data from Python

Performing statistical operations
on data using Python

Screenshots of results from said
operations

Selecting data from specific areas
and aggregating it

Screenshot of result from
aggregation with area

Creating an API to interface with
and get data

Screenshots of successful web
requests showing data

Creating a user interface to show
data from the API via graphs and
figures

Screenshots of the user interface

Having searched for historical data
taking j500ms

Video of searching for historical
data with HTTP response time

Generating statistics for an area
and displaying taking j2000ms

Video of analysing a specific area

Upload new data to the website for
analysing and searching

Screenshot of new data

Setting time frames for analyses of
the data

Video showing the data changing
based on the time frame

13




Chapter 2

Design

2.1 Decomposition

Main Application

Web Interface Data Ingest

Data Storage &
Data Processing & Caching

Aggregation

The application will be broken down into four smaller more manageable
sections. These will allow me to develop the application more easily and allow
for easier testing and refactoring. These sections will be the web interface,
data processor & aggregator, data ingest and data storage & caching.

14



The web interface is how the user would interact with the application and
where the data will be presented to them. This will need to be responsive
and easy to use. This will further be broken down into the data visualisation
aspects and the data selection part allowing me to develop them individually
and get stakeholder feedback on each. This will be the only way the user
interacts with the programme so stakeholder feedback will be essential for
creating a good user experience. The visualisation will be done using D3.js
and the web interface will be done using svelte.js allowing for interactivity
and dynamic interfaces. It will receive the data for visualisation from the
backend which will be a flask server running a web API and server to serve
the static files.

Web Interface

Svelte JS :
Rendering Flask Serving

the HTML APl Requests

D3.JS to Render Flask Serving

Graphs Using Static Files
Data from API

Data processing & aggregation will allow me to perform statistical oper-
ations on large datasets in a very little amount of time improving the user
experience. This will work seamlessly with the data storage component allow-
ing for even greater efficiency. The main sub-component will be aggregating

15



the data using Dask which allows data to be processed in parallel across mul-
tiple processors over multiple machines meaning it can aggregate hundreds
of thousands to millions of rows in sub-second time again adding to the user
experience. To again improve efficiency a caching layer will be added so that
commonly executed queries need not be repeated saving computing time and
costs. After processing this data will need to be served to the user which will
be done via a Flask API which sends the data in JSON format over HTTP.
All of this works as one big organism creating a coherent user experience.

Data Processing &
Aggregation

Data Fetched Aggregate Data

From Database Using Apache
Spark

Check if Aggregation Return Data to
has Been Cached Flask for Serving

The data ingest component will be key for keeping the data accurate and
up to date as update files are released every month so the ability to ingest
and process this data promptly will result in a better representation of the
housing market at that point in time. This will be done by three different
components. Firstly the file will need to be downloaded from the government
website every month as soon as it’s available so a script will constantly be
checking the website to see if a file has been changed. Secondly, the file
will then need to be processed as it’s in the CSV format so a script will
convert it into a 2D array ready for insertion into the database. Thirdly it
will be inserted into the database but some rows are insert rows, addition

16



rows and deletion rows so those will need to be handled accordingly so that
the database remains up to date.

Data Ingest

] Ammend or
Load CSV File Delete Historic

into Database Record

Download Monthly
File from Government
Website

Data storage will play a large role in the overall efficacy of the application
as it will need to be able to sort through millions of rows in a few hundred
milliseconds and be able to join multiple tables each containing potentially
hundreds of thousands of rows. This will require a relational database and
the database of choice will be PostgreSQL. This will allow me to perform all
of the above and more as I can then use a full-text index to search partial
postcodes allowing for great granularity when analysing an area. All of the
data will be stored in a third normal form allowing for no unnecessary data
duplication and maintaining referential integrity. As mentioned before there
will also be a caching layer allowing for even greater speed. This will be done
using a Redis database which is an in-memory database which can store
key-value pairs (query-hash, result). This cache will act between the web
interface and data processing & aggregation components so that when a user
requests data it can be fetched from the cache instead of being recalculated.

17



It will be flushed every time an update is made to the database so that the
highest order of accuracy can be maintained.

Data Storage &
Caching

Store Data in
Relational
Database

Store Recent
Queries and
Aggregations in
Redis

Store Sales
Data in 3NF

Flush Cache
when Data is

Updated

2.2 Algorithms

The main part of my programme will be the statistical analysis & aggregation
module as this will require the most attention and optimisation as all the
other components have been done before and have lots of resources online
making them a lot simpler to develop. The main purpose for this module
will be to fetch data -> process it -> return it.

18



Return Data For Visulisation

Fetch Data Perform
From Database Aggregations
on Data

Query Have Data Remove Calculate
Database Loaded into Outliers From Yearly

SQL Databse Data Change

Calculate
Check Cache Remove data [l volume of il Show Most

for Previous not within 3 std S Recent
Query devs of median Transactions

Calculate
Calculate Calculate Mean Price
Standard Proportion of

Deviation House Types

This will be broken down into two sections data acquisition & data aggre-
gation. These will then be further broken down into smaller sections as you
can see in the figure above. Once all these functions have been performed
this will be sent to the web interface where it will be visualised for the user
using various charts and tables.

2.2.1 Removing Outliers

This will be the function that is run the most out of all of these as every bit
of data fetched will need to have all the outliers removed so that it does not
make the results skewed in any way. This will be done using the standard
deviation of the data and then removing any data that is greater than 3 times
the standard deviation away from the mean. To speed the process up this
will be run on Dask so the dataset can be processed in parallel. The reason
I'm using 3 standard deviations as all the data I am using is continuous
and can be displayed as a normal distribution X ~ N(Z,0?). Where 7 is
the mean and o? is the variation. With normal distributions, the data can

19



be split up into standard deviations from the mean with a probability of it
being within that range. For example 68% of values lie within one standard
deviation, 95% lie within two standard deviations and 99.9% lie within 3
standard deviations of the mean.

(lambda x: mean-(3*sc

2.2.2 Calculating the Standard Deviation

This will be run as much as removing the outliers as it will be required to
remove the outliers when showing the volatility of the house prices over the
month. This will be another metric in showing the user the state of the
housing market as they can see when three is the most potential to make
money and when the market is acting rather stale. So it will be used on a
wide variety of datasets like sales transactions, monthly percentage changes
and yearly percentage changes so will need to handle them accordingly.

This is the equation for standard deviation where n is the length of the
dataset and x is all the items in the dataset.

2 2
C,: JE B <2> o)
n n
risdxis4

I imagine in the future I will need to further optimise this function as it
is pretty basic right now and only used the tip of the iceberg when it comes
to Dask functions.

20



edundent distributed datase

() // Calculates the ¢
2P

2.2.3 Calculating the Percentage Change

Percentage change will be the key metric for comparing different areas and
their performance as house prices between areas so representing the changes
as percentages instead of absolute values allows for them to be easily un-
derstood since they will be normalised. It is also one of the more complex
functions as it requires a lot of manipulation of the data since the transac-
tions will need to be grouped by houses and then calculate the percentage
change between sales. This will then be extrapolated over the period between
sales so 10% over two years will result in a 5% APY. These will then need to
have the outliers removed and then averaged for an area. On a small scale,
this function will run in a reasonable amount of time but as you increase the
dataset the time increase exponentially so O(n) =~ 2". Further optimisation
will be required at a later date but for now, it is acceptable enough to pro-
ceed. This function will also be able to perform this aggregation on a more
granular scale for example monthly percentage change allowing the user a
better insight over a shorter period.

21



function hange(data){

(['houseID']). (1)
useID']). (interpolate)
(['date']). ()

or i in range( <12, df[0][date].
L in enumerate(df):

return results

2.2.4 Parsing the CSV

Parsing the CSV file which contains the monthly sales data or the yearly sales
data will need to be a highly optimised process but luckily it is a rather simple
task. This will be written in Golang instead of python as it is significantly
quicker for these kinds of tasks that require a lot of iterations. As of right
now, the function will be single threaded but later down the line if required it
can be converted into a multi-threaded function allowing for it to be parsed
at a speed n time faster where n is the number of threads. Of course, this
will be limited by the number of cores in the CPU it is running on. The file
will be parsed line by line and each line is split into cells using a delimiter,
in this instance, it is a ’,”. These lines will then be saved as a list with each
item in it representing a cell from that row which will be stored in an array
where each item is a sales transaction. This array is then passed onto another
function to insert each transaction.

22



return outy

}

2.2.5 Inserting or Rectifying Transactions

Inserting a transaction is a fairly simple process and only requires a few
lines of SQL though it is a bit more complicated as a transaction can result
in different operations being performed which is denoted by the last cell
and the letter stored within. The letter A means that this transaction is
to be added to the dataset. The letter C means to edit the transaction
with this transaction id to have this information. The letter D means delete
this transaction with this transaction id. All these operations have to be
performed whilst maintaining referential integrity so that it maintains the
third normal form. Furthermore having the transactions inserted sequentially
will take forever as there are hundreds of thousands of transactions each
month so a master-slave architecture will be used. This is where the master
sends out jobs and the slaves receive those jobs and then complete them.
This means that the transactions can be inserted n times quicker where n
is the number of slaves but this will be limited by the throughput of the
database I am using.

23



INTO postc
ES ($1,$2,$3,%
nfol3]
INTO hou
$1,$

hold ppd_cat

S (i; ,$2,$3,$ ) X ( (,]w) L‘HVHHHL
nfo[0][ f )
w_build, free sale fo , sale o 1, houselID)

elif type == "C":
TE FROM sal ERE tui = $1;", sale_info[3])
I INTO pc C C t, town, district, county)
> ($1,$2,$3, postcode) DO NOTHING;;
nfo[3], sale fo , sale_info[11], sale fo[12], sale

FROM sales WHERE tu $1;", sale_info[3])

2.2.6 Searching for Areas Flow Charts

When a user searches for an area they might not know the exact name or
what type of area it is so by storing all of the areas and their corresponding
types in an ElasticSearch database I can create a search index. Postcodes
will also be broken down into 5 different types Of areas allowing for greater
granularity.

24



UK Postcode Components

Ii outcode _l ,— |ncode

SW1A OAA

I— sector ”— unit —I
I— subdistrict —I
I— district —I

area

@ 1dealPostcodes

This will allow me to send queries to the database and have it return all
areas and their types that match or are similar to what the user searched.
These will then be presented in a list for the user to select from allowing for
a greater user experience and making the programme easier to use for people
unfamiliar with the geography of England & Wales.

25



Retrieve all Postcodes, Searches
Towns, Streets & elasticsearch for
Districts From Database that area

Break Down Postcodes Returns a list of areas with the
into sector, outcode, same or similar names to what
subdistrict, district & they searched

area

User picks the area
Store all of these as from the list they
individual objects in would like to search
elasticsearch database with by
their corresponding area

type

(FYT this is to be extended but I cannot think of any other major func-
tions at this point as IDK what other statistical operations I will perform
until I start development.)

26



2.3 Usability Features

House Data

Advanced \v/

This will be the first page the user lands on and aims to be as simple as
possible whilst still maintaining all the functionality required. The interface
is focused around this search bar as the user should be able to type in a
place or area and have the data come up without any extra work. I chose
this as I want this to be useable by any average person that has no extra
knowledge about computers or houses other than the basics. Whilst the user
is searching it will come up with suggestions below the search bar in a list
with the name of the area and what type it is whether it’s a postcode or a
district allowing them to more easily find places. Below the search bar is a
button which allows the user to enable more advanced options like excluding
certain building types or limiting the date range. These options are still all
accessible but are hidden unless needed so as not to distract the user.

27



C H 6 41 RG 37 Properties | Mean APY of 4.6% | Mean Price of £637,653 | 310% National Average

Recent Transactions Detatched -
Semi-Detatched -
PAON, SAON, Street Name 2 Other - & ~
Price - £000,000 | Date - 22/09/2022 S
PAON, SAON, Street Name o
Price - £000,000 | Date - 22/09/2022 < /\\//\ —/
o [T—
PAON, SAON, Street Name 2
Price - £000,000 | Date - 22/09/2022 o
PAON, SAON, Street Name
Price - £000,000 | Date - 22/09/2022
Date 1995-2022
House Types N CH64 1RG Area -
Semi-Detatched (26%) - g | National Average - M
Other (14%) - c
Flat/Maisonette (7%) - ®
K
(6]
(o]
o
©
=
jol
o
jo}
a

Date 1995-2022

After the user searches for the area and selects the one they want to
view from the list they will be sent to this page. In-between this page and
the search bar there will be a loading screen to indicate that something
is happening as the aggregations could take an extended period depending
on the area but for the time being, this will only be a nicety and not a
required feature. On this page will be a range of graphs and visualisations
all rendered using D3.js as it allows for a high level of customizability for each
plot so that they can be understood by all the users. There is also a minimal
amount of text as having a wall of text containing all the statistics would
be daunting for almost any user so using visualisations and only having the
bare minimum amount of text creates a lot better user experience. The figure
will also be made using contrasting pastel colours to not dazzle the user and
make viewing and reading easier on the eyes. The colours used are also all
colour-blind friendly.

28



Chester & Sheffield

Chester | Sheffield

Chester -

Mean APY | 3.7% 2.8% & | Rational Average -
Houses 38K 145K S P
[o2]
Mean Price 245K 186K % / ,\\/
s —"

Date 1995-2022

Chester -
Sheffield -
National Average - B

\//\/A\//\

Date 1995-2022

Sales Volume

Looking at one specific area is useful but only provides a micro view of
the housing market but comparing areas with each other and seeing their
performance alongside the national average provides a macro view of the
housing market. This will be useful for users who use this platform to judge
investment decisions as it allows them to look back through historic data
and judge which area has the most potential or which is the most stable.
Combining all these statistics gives the user greater insight into house prices
but requires the user to be able to interpret the figures correctly so it is more
aimed at the advanced user base. This will allow me to display more complex
statistics allowing an even greater insight. These more complex statistics will
also take longer to process so the page will use lazy loading to only load them
when the user can see them speeding up the overall load time and creating
a better user experience.

29



H ouyse D ata 26 Million Sales |15 Million Houses | £5.8 Trillion Total Volume |16.6K Queries per Month

Admin Panel
Top Queries This Month Actions
London - 764 Rebuild Search Index
Sheffield - 683
ee Clear Query Cache
CH2 1DE - 532
Cheshire - 487 Upload Monthly File
Recent Issues Monthly User Stats
Error line 36 : invalid data type int for dict routes.py Unique Users - 487
Error line 36 : invalid data type int for dict routes.py Return Users - 1582
. . . . . Queries per User - 8
Error line 36 : invalid data type int for dict routes.py Referal User - 284
Error line 36 : invalid data type int for dict routes.py Total Users - 2069

Error line 36 : invalid data type int for dict routes.py
Error line 36 : invalid data type int for dict routes.py

Being able to manage the site from a single page will be essential to
find bugs and seeing trends in what users are doing on the platform. From
this page, you will be able to upload the new monthly file manually if it
hasn’t detected them automatically, flush the query cache forcefully if some
incorrect data is being stored there and rebuild the search index. All of
these operations would normally be performed automatically but having a
manual override allows me to fix any issues that may occur. It will also
allow me to look at popular queries and precache them to improve user
experience. Alongside them will be all the most recent errors that have been
logged so that they can be analysed and debugged improving the overall user
experience. This page will be locked behind a username and password so
that no one can access this panel and use it for malicious purposes.

30



2.4 Variables & Data Structures

2.4.1 Database Architecture

Sales

VARCHAR(36)
INTEGER
DATE
BOOLEAN
BOOLEAN
CHAR

CHAR
VARCHAR(150)

tui

price
date
new
freehold
ppd_cat
type
houseid

Postcodes

Houses

houseid VARCHAR(150)

paon
saon

VARCHAR(150)
VARCHAR(150)

postcode VARCHAR(15)

postcode
street
town
district
county

VARCHAR(8)
VARCHAR(70)
VARCHAR(50)
VARCHAR(50)
VARCHAR(50)

The database structure has been designed to be in the third normal form.
This means that there is little to no duplicate data, referential integrity
will be maintained and will simplify data management. This will improve
efficiency when fetching, inserting and updating data which will improve the
overall flow of the entire application. All of the columns will have individual
indexes as they will be sorted pr searched via making these quicker so that it
can do an index search vs a collection scan which is highly inefficient. All the
columns are defined below with their corresponding data type and purpose.

Name Data Type Table Purpose
price int sales The sale price of the house
date Date sales The date of the sale

31




new Boolean sales The sale price of the house

freehold Boolean sales Whether or not it is freehold
or leasehold

type char sales The house type whether it is
detached, semi-detached or a
terrace

ppd_cat char sales Whether or not it was sold at a
standard price A or had addi-
tional costs like repossessions
B

tui varchar(36) sales String used to uniquely iden-
tify a transaction

houseid varchar(150) sales/houses A string used to uniquely iden-
tify a house

paon varchar(150) houses Primary addressable object
name like house number or
name

saon varchar(150) houses Secondary addressable object
name e.g. the flat number in
the building 3b

postcode varchar(15) houses/postcodes | The postcode of the house

street varchar(70) postcodes The street of the house

town varchar(50) postcodes The town of the house

district varchar(50) postcodes The district of the house

county varchar(50) postcodes The county of the house

2.4.2 Key Variables

Name Data Type Purpose

Requested list Contains the list of tuples for the house data

Data (id, price, houselD, date)

Time frame tuple Contains the two dates to request data be-

tween
Location string The location to filter the data by
Session dict Contains all the session data for the website

32




Database host | str IP address of the database server
Database user | str Username for the database

Database pass- | str Password for the database

word

Standard Devi- | float The standard deviation of a given dataset

ation

Dataset

python object

This will be a resilient distributed dataset
which allows aggregations to be performed on
it in parallel. This will contain the sales data
for a given area

Dask Address | str The IP address for the Dask cluster

Job ID str The id of a Dask job so that the status can be
displayed to the user

Dark Theme boolean Whether or not to display the website in a
light or dark theme

Exclude dict Contains information on what types of sales to

include or exclude from the aggregations. Can
be set by the user via the advanced section

2.4.3 Validation
Area Search Input

The user will be able to type whatever they like in this input so a few valida-
tions will need to take place. The first one that will take place is client-side
validation. This is where code running on the web browser validates the
input but this type of validation can be easily bypassed so is not used for
security and will be used for improving the user experience. It will work by
not allowing the user to type in special characters or characters from other
languages as these cannot be used in addresses or the names of areas in Eng-
land & Wales. The other type of validation that will take place is server-side
which will aim to prevent SQL injection as the data inputted by the user will
be used in an SQL query to find the relevant places to suggest to the user.
This will be done by iterating through the string and looking for any special
characters and removing them as they are not necessary and are mostly used
with malicious intent.

33



Monthly Update CSV File

When inserting the monthly update file into the database it needs to comply
with the CSV format which by standard uses a comma to separate cells and a
new line to indicate a new row. This is all checked when it is being loaded into
memory and a 2d array. This validation is paramount as incorrect formatting
could result in cells getting mixed up or rows combined which then would
make any statistics derived from that data inaccurate and unusable.

2.5 Testing

2.5.1 Unit Testing

Testing will be done throughout development making debugging easier as any
issue can then be narrowed down to a single function or group of functions.
The applications will be broken into four distinct units (Web Interface, Data
Ingest, Data Storage, Data Processing). These will each have numerous tests
as they will be made up of tens of functions so the tests will be abstracted
into these 4 units. The tests will be carried out automatically on each push
request & merge to the GitHub repository. GitHub has a built-in DevOps
framework which will allow me to create a YAML file defining all the tests
it needs to run and then will return the results. If it fails any of the tests it
will not allow any of the code to be merged therefore not creating any issues.
By doing this I can be sure that the entire programme is functional and that
breaking changes are not implemented. Below is a list of all the tests I will
carry out. If all these tests are successful I can be sure that my programme
is fully functional.

Function Working

Check standard deviation function produces correct values

Check removes_ outliers removes all data outside the 99.99 per-
centile

Check CSV parser detects bad files

Check SQL escape function removes all special characters

Check monthly update files are parsed correctly into amend,
delete & change

Check monthly file downloader downloads latest file available

34



Check D3.js accepts correct data only for graphs

Check Redis cache is hit before running an aggregation

Check the correct data is fetched from the database for an SQL
query

Check connection to Dask is working

Check relational integrity of database to maintain third normal
form

Check cache is flushed after new data is added

Check recent queries are properly stored in Redis cache

Post Development Testing

Once all of the above tests have been successful my programme will be passed
on to my stakeholders who can use the programme and find any issues that
were not detected during the development phase. These could be misaligned
text in the GUI, graphs not loading or images not showing up. There could
also be programmatic issues that I missed that they found. These can be
logged using a piece of software that will implement in my code called sentry
that logs code errors and crashes which are then logged and aggregated to
show repeated issues and what caused them allowing me to more easily debug
them. All of these combined will allow me to eliminate as many bugs or issues
as possible resulting in the best user experience.

35



Chapter 3

Development & Testing

3.1 Ingesting Sales Data

3.1.1 Initial Setup of Service

My application will rely on a fair few services for data storage, data pro-
cessing and communication between the modules. This will all be hosted on
servers at my home using virtual machines running on a hypervisor called
Proxmox. Proxmox allows me to manage virtual machines over multiple
servers from one web Ul. By using VMs I can provision a set amount of
computing resources for each service.

X PROXMO X vitual Envionment 7.3-4. 5oerch

Server View Node ‘anton0’

£ Datacenter (antons)
B antono

Q Search

G 120 (NGINX-proxy)
) 122 (hd-docker) & Ssummary
S [JNFS (anton0) O Notes
£ [JIocal (anton0) >_ Shell
£ [Jiocal-vm (anton0)

[ B antont % System
3 100 (torrenter) = Network

G 101 (plex-server)

[t

[ #* Certificates
G 104 (docker-host)

¢

DNS
107 (minecraft) ©
) 109 (postgres-prod) @ Hosts
S [ NVME (anton1) & Options
£[J sAS-Drives (anton1) © Time
£ [Jlocal (anton1)
£ local-vm (anton1) = Sl
© anton2 £ Updates
B antons ] Repositories
0 Firewall
& Disks
[ v

Package versions

anton0 (Uptime: 3 days

i} CPU usage

= Load average

" RAM usage

8 /HD space

CPU(s)
Kernel Version
PVE Manager Version

Repository Status

CPU usage
5
45

15:10:23)

1.39% of 32 CPU(s)

0.39,0.54,0.64

23.56% (8.31 GiB of 35.27 GiB)

8.25% (7.75 GiB of 93.93 GiB)

RN 0 Crece v | @ Create CT

O Reboot ) Shutdown > Shel i Bulk Actions © Help
Hour (average)
© 10 delay 0.10%
KSM sharing 08

& SWAP usage 0.00% (0 B of 800 GiB)
32 x Intel(R) Xeon(R) CPU E5-2450L 0 @ 1.80GHz (2 Sockels)
Linux 5.15.83-1-pve #1 SMP PVE 5.15.83-1 (2022-12-15T00:002)
pve-manager/7 3-4/d63570c4

% Proxmox VE updates () Non production-ready repository enabled! >

® CPUusage | @ 10 delay

o
'} A

\ A
Lo - | =T
il __ A

I will need to access these VMs remotely so I can develop the application

36



when I'm at school or away from home. To accomplish this I will use a VPN
which allows me to tunnel into my home network from anywhere with an
internet connection and access all devices on the network as if I was there.
The VPN is run on a containerisation platform called Docker (running in a
VM) that allows me to virtualise an application with very little overhead as
opposed to a VM to run services independently of each other as if they were
running on independent machines. By doing this I remove all dependency
conflicts and give myself the ability to scale my platform by simply running
more instances of a service if it supports that. Once I was able to access my
network remotely I could start setting up other services on Docker. To do
this I used a container management tool called Portainer which allows me to
create, stop, start, restart and edit containers using a web Ul In the image
below you can see all the containers I am running.

# portainerio  «
Ll Container list & admin v
® Home
& Containers [e} + Add container | (@
house_data Z il
W Name | Quick Actions  Stack Image Created IP Address GPUs  Publi
Dashboard

. {running | codebase 2022-11-26 00:16:08  172.21.0.2 none
App Templates

€@ R 8

Stacks ™ [ ] codebase 2022-11-26 00:16:08  172.21.010 none -
Containers

™ [ ] codebase 2022-11-26 00:16:08 17221011 none -
Images
Networks [ ] codebase 2022-11-26 00:16:08  172.21.012 none -

Volumes

()
<
8
@

)

codebase 2022-11-26 00:16:08  172.21.013 none -
Events

(

Host [ ) codebase 2022-11-26 00:16:08  172.21.0.3 none
codebase 2022-12-27 23:04:25  172.21.0.9 none -
Settings

o Users codebase 2022-12-27 23:04:26  172.21.0.5 none -

P codebase 2022-12-27 23:04:26  172.21.0.8 none -
§ portainer.io Community Edi

These services are all deployed using a 'docker-compose.yml’ file where
I can define what service I want to run and any variables that it will need.
This makes adding new services and updating existing ones super easy. Here
below you can see an example of how a YAML file is formatted and how a
service is defined. The services I will be running on docker will include Dask
for data processing, a container for inserting sales into the database, the
webserver for the web interface, database management UI, and MongoDB
for caching aggregations. The service being defined here is a web UI used to
manage a PostgreSQL database.

37



version :

” 3 977
services:
pgadmin :

image: dpage/pgadmind
restart: always
environment :
PGADMIN DEFAULT EMAIL: user@eg.com
PGADMIN DEFAULT PASSWORD: root
volumes :
— pgadmin—data:/var/lib /pgadmin
ports:
— 75050:807
networks:
— net

The database this will be managing is not deployed using a container and
instead runs in its virtual machine as it provides better performance than a
Docker container. The VM is running Ubuntu Server 22.04 with Postgres 15
running on it as a standalone service. This VM has been allocated 6 cores
and 16GB of RAM so that it can perform numerous queries at once and have
enough RAM to store indexes in. Below are the SQL statements used to

create the tables required.

create table postcodes
(
postcode varchar(15) not null
constraint postcode_key
primary key,

street varchar (70) ,
town varchar (50) ,
district varchar(50),
county  varchar (50),
outcode varchar(4),
area varchar (2) ,
sector  varchar (6)

)

create unique index postcode_idx on postcodes

(postcode) ;

38




create index area_idx on postcodes (area);
create index county_idx on postcodes (county);
create index district_idx on postcodes
(district);

create index outcode_idx on postcodes
(outcode) ;

create index sector_idx on postcodes (sector);
create index street_idx on postcodes (street);
create index town_idx on postcodes (town);

create table houses

(

)5

houseid wvarchar(150) not null
constraint houseid_key
primary key,
paon varchar (150) ,
saon varchar (150) ,
postcode varchar(15)
constraint postcodes_keys
references postcodes,
type char

create index postcodes_index on houses
(postcode) ;
create index type_idx on houses (type);

create table sales

(

tui varchar (36) not null
constraint tui_key
primary key,

price integer ,
date date,
new boolean ,

freehold boolean ,

ppd_cat char,

houseid wvarchar(150)
constraint houseid_fk

39




references houses
)i
create index date_idx on sales
(date) ;
create index freehold_idx on sales
(freehold desc);
create index ppd_cat_idx on sales (ppd.cat);

Once all the tables are created I will need to set up Apache Kafka which
allows the software modules to communicate with each other. This is run on
a VM as I had trouble running it on Docker as it has its own networking and
I wasn’t able to access the container from outside the Docker environment,
so it is instead run as a standalone service. By running it on a VM I can get
around this issue allowing me to access Kafka whilst running the application
on my laptop so I can test it whilst developing.

3.1.2 Sales Ingest & Upload

Once all of the services are running I can start development. The first module
that needs developing is the data ingest programme which will allow sales to
be read from a text file and then inserted into the database. It will consist of
3 scripts one for reading sales from the text file and sending them to Kafka,
another for checking if a new file has been released and then sending the sales
to Kafka and finally one to receive sales from Kafka and then insert them
into the database.

Sales Upload Programme

First I will start with the script to read sales from a text file as data is
needed to test the other scripts. The Land Registry has a text file which
contains all sales from 1995 to the most recently published month. This can
be downloaded from their website. Inside the file are millions of rows each
representing a sale with comma-separated columns storing the corresponding
data for that sale. Below is an example of a row from the file.

To send this on Kafka and stored in a database it will need to be parsed
into tuple format each representing a sale. Below is the code which opens the
text file and then parses it. If the file opened is not a valid CSV file an error
is thrown and the programme stops so that no further errors are created.

40




“{75520218-C2D9-4926-95E3-00061A7A3784}7,”248000",="2013-10-04
00:007,"CR2 6PB”,”T”,”"N”,”F",”36",72-77,”"SELSDON ROAD”,””,”SOUTH
CROYDON”,”"CROYDON”,”"GREATER LONDON",”A”

from csv import reader

with open(”./pp—complete.txt”, "r”) as f:
# Opens the file
try:

csv_file = reader(f) # Parses the file into a
list
except:
raise ValueError(”Invalid-CSV-file”)

Once the list of sales has been generated the sales need to be sent as
messages in a Kafka topic. This is done by iterating through the list and
then sending each row one after the other once it has been converted to the
correct data type and encoded as bytes. Below is the code to do this.

for sale in csv_file:
sale = [sale[0][1: —1]] + [i for i in sale[1l:]]
# Removes brackets from the transaction ID
sale_bytes = str(sale).encode(”UTF-8")
# Converts the list into a string and
#then encodes it into bytes
self. _producer.send(”new_sales” , sale_bytes)
# Send the sale to kafka

After running this code I found it to be very slow. To find the reason for
this I used CProfiler which allowed me to see the execution time of each line
and how many times it was run. I concluded that although the operations
by themselves are very quick when run 26,000,000 times it quickly adds up
as a lms difference can take off 7 hours. To combat this I used a while
loop as they are quicker than for loops and I then used a generator to apply
the operations en-masse to the list which is quicker than doing each sale
individually. Generators are quicker as they don’t load all the results into

41



memory at once and effectively lazy-load the results as you iterate through.
Then apply the operations en-masse using the map function as it is built into
python and designed for this exact purpose so is a lot quicker as is written
in native C. As opposed to converting the list to a string and then encoding
it as bytes it instead encodes it into bytes directly using the pickle library
which reduced the time further. Another issue I found more to do with
efficacy rather than efficiency is the Kafka official library for Python would
often have issues connecting to my Kafka instance but would act as if it was
connected but not send messages. Eventually, I concluded that I should use
a better-supported library and switched to the confluent_kafka library which
not only eliminates this issue but is more efficient at sending messages and
has a much larger group of maintainers.

After solving all of these issues the final code ended up looking like this.

with open(”./pp—complete.txt”, "r”) as f:
csv_file = reader(f)
csv_file = map(lambda x: dumps([x[0][1: —1]] +
[i for i in x[1:]]),
csv_file)
# Applies operations to all sales
while True:
# While is quicker than a for loop
try:
list _bytes = next(csv_file)
# Converts list to byte array
while True: # Retries if message fails
try:
self. _producer.produce(” new_sales” ,
list _bytes)
# Send each sale as bytes
self. _producer.poll(0)
break
except BufferError:
# Flushes message buffer if full
print (time. time (), ”Flushing”)
self . _producer. flush ()
# Sends any unsent messages
# that are clogging up the

42




# buffer
print (time. time () ,
”Finished - flush”)
except Stoplteration:
self . _producer. flush ()
break

All of this is then put into a class and broken up into functions for opening
the file, connecting to Kafka and uploading the sale. I then tested it to see
how long it would take to upload the entire sales history in one go. Below is
the output once the programme has finished running.

1672950053.122972 Flushing
1672950056.504875 Finished flush
1672950056.8460338 Flushing
1672950060.2112582 Finished flush
1672950060.56053 Flushing
1672950063.951547 Finished flush
1672950064.288726 Flushing
1672950067.578248 Finished flush
1672950067.905192 Flushing
1672950071.3090932 Finished flush
1672950071.651381 Flushing
1672950075.050528 Finished flush
1672950075.3969111 Flushing
1672950078.722295 Finished flush
Finished

1069.6391460895538

(.venv) (base) morganthomas@lorgans-MacBook-Air

You can see it took 1069 seconds. This works out to about 24,300 inserts
per second making it perfectly adequate for my use case as this only needs
to happen once and then be updated each month. With this kind of speed,
the update should only take 5 seconds. I also had To test to see if Kafka
was receiving the messages so I made a quick script to receive and print out
messages from Kafka.

consumer . subscribe (["new_sales” )
while True:
msg = self._consumer.poll (1.0)
# Fetches the latest message from kafka
if msg is None: #Checks the message isnt empty
continue
if msg.error(): # Checks there are no errors
print (”Consumer-error:-{}”.format (msg. error () ))

43




continue
sale: List = loads(msg.value())
# Converts the bytes into a python list
# and asserts the correct data type wvalidating
# the message
print (sale)

I then successfully ran this code and received back all the sales that had been
sent to Kafka. Below you can see the output for this.

[DDBGIWJ E491 4F68 ?FSA ACbBEGBSFZSS': '33\’?08‘, '1995-05-12 @0:00', ‘'LS13 1JT', ‘T', 'N‘, '‘F', '12%, '', 'COWLEY ROAD', 'LEEDS', 'LEEDS', 'LEEDS', 'WEST YORKSHI
[BGFE7C7 33A 486( B222-A54DOF1EDD3E', '72000', '1995-06-09 00:00', 'BS49 4LH', 'S', 'N', 'F', ' ', "', 'CLAVERHAM ROAD', 'CLAVERHAM', 'BRISTOL', 'WOODSPRING'

, AV

[ 2F8E3507- 3E84 4EDE 8BA4- A54D1AAE7c49', '38000', '1995-11-17 00:00', 'OL16 2LQ', 'T', 'N', 'L’ , 'COLLEY STREET', 'ROCHDALE', 'ROCHDALE', 'ROCHDALE', 'GR

EATER MANCHESTER'

[ 7FDF4238-618C~ 47(1 BD72- A54D1E151A22', '89950", '1995-08-18 00:00', 'Y043 4RP', 'D', 'Y', 'F', '7', '', 'WOLD RISE', 'SANCTON', 'YORK', 'EAST YORKSHIRE', 'HUMBE

RSIDE', 'A',

[ 94C665FB-3FDB-4797-82EF-AFFO3F49121F ', '54000', '1995-03-14 00:00', 'NG34 7GZ', 'D', 'N', 'F', '5', '*, 'HAWTHORN DRIVE', 'SLEAFORD', 'SLEAFORD', 'NORTH KESTEVE

N', 'LINCOLNSHIRE', 'A', ‘A’

['77936C91-81F3-49F6-932E-AFFO6OF74FD5 ', '17500', '1995-11-17 00:00', 'NN14 2NU', ' "', 'FEDERATION AVENUE', 'DESBOROUGH', 'KETTERING', 'KETTE

RING', 'NORTHAMPTONSHIRE', 'A‘, 'A'

[ 44B838FC-41B0-4CEQ-A132-B37DDDETSCFF', '32000', '1995-01-26 00:00', 'TS5 4NT', 'T', 'N', 'F', '12', ', 'BEADON GROVE', 'MIDDLESBROUGH', 'MIDDLESBROUGH', 'MIDDL
'MIDDLESBROUGH' ,

ESBI ’ A", 'A*
['DE58C511 3E-8867- B37EB7FEB78F', '54500', '1995-09-15 @0:00', 'ME14 5SX', 'T', 'N', 'F', '21', '', 'SPEEDWELL CLOSE', 'WEAVERING', 'MAIDSTONE', 'MAIDSTONE

Unfortunately due to the nature of this module, the stakeholders weren’t
able to provide any meaningful input as the user has nothing to do with the
insertion of the sales and only deals with the aftermath of it. But it does
meet the success criteria of being able to upload new data to the website for
analysis.

Code Layout
Sales Ingest Programme

Now that the upload programme has worked I can develop the ingest server
as it needs the data from the upload script to test it. Firstly I need to be
able to receive the data from Kafka. This was done using the confluent_kafka
module like the uploader. I realised as well that I don’t want to be storing
the login credentials for Kafka and the database in the programme. To solve
this I used a .env file where I can store key-value pairs containing all the
data. This can then be loaded into the programme using the os module.

def _load_env(self):
# Loads the environment variables
# where 1st arg is the name and
# 2nd is the default value

44




time
csv reader
0s environ
pickle dumps

confluent_kafka Producer

You, 3 months ago | 1 author (You)
class initDB():
def __init_ (self) —> None:

def _load_env(self):

def upload_sales(self):

def run(self):

self . DB = environ.get ("DBNAME’ , "house_data”)
self . USERNAME = environ \
.get ("POSTGRES_.USER” , "house_data”)
self . PASSWORD = environ . get ("POSTGRES PASSWORD” |
" password”)

self . HOST = environ. get ("POSTGRES HOST” ,

7192.168.1.1337)
self . KAFKA = environ.get ("KAFKA” |

7192.168.1.146:90927)

Once the environment variables have been loaded they can be accessed to
connect to the database and Kafka. Now that the programme has connected
to Kafka it can start receiving messages. The code for this is the same as the
test for the sales upload script above. Once I confirmed it could receive mes-
sages I then needed to process the data to be inserted. This meant breaking
the data up into its corresponding data and changing a few of the data types.
For example, the new_build and sale_type columns were stored as characters
despite only having two possible values so they were changed to boolean. The
dates were also represented in a string format so they needed to be converted
into a Python Datetime object so that they can be inserted correctly. All
of these operations also validate the data as if any were incorrect an error

45




would get thrown and they wouldn’t be inserted.

new = True if sale[5] = "Y” else False
# Convets to boolean type
freehold = True if sale[6] = "F” else False

# Converts to boolean type
date = datetime.strptime(sale [2], "%Y-%m%d-%H:%M")

# Converts string to datetime object

This allows the columns to be more easily searchable as indexes can be ap-
plied to them dramatically decreasing the search time. Without an index,
the database has to do a linear search which takes a lot longer than a binary
search which is used by the database when a column is indexed. A unique
identifier also had to be created for each house so that they could be refer-
enced by each sale. Initially, I created a sha256 hash of the attributes which
would then be set as the houseid. After some testing, I realised that this
would take too long and was completely necessary as I could simply append
the attributes to each other making a unique string.

houselD = str(sale[7]) + str(sale[8]) + str(sale[3])

Once I had completed all of these operations the data could be inserted
into the database. I originally did this using the official library for Post-
greSQL. This worked fine and allowed me to insert all the data into the
database. Below is the code for this. When I tested this though I was
getting about 50-60 inserts per second which are acceptable but when do-
ing 26,000,000 sales it would take about 120 hours or 5 days which is an
unnecessary amount of time. I used CProfiler again to see where its main
source of time loss was and it would often get stuck waiting for the insert
to finish. To combat this issue I switched to an asynchronous model which
allowed me to run other code whilst it was waiting for the query to finish.
Luckily there is another library for PostgreSQL which is asynchronous and
uses the same interface as the standard one so it was as easy as putting an
await keyword in front of the function and then it would run asynchronously.
This means I was able to get about 500 transactions per second meaning I
could get the insertion done in about 14 hours which is a lot quicker than the
other method. Due to how I structured the insertion system the ingest script
could be horizontally scaled by simply running more instances of it and Kafka

46




would split the messages up between all the instances. This would make it
x times quicker where x is the number of instances running as long as the
database could keep up. I found a good number was about 4 instances as it
would be quick enough and wouldn’t completely bog down the database.

After testing my ability to search the types of areas I realised that it
was very slow as [ would often have to do multiple joins and linear searches
as | could use the correct index as the data wasn’t in the correct format.
This lead me to create another table called area which had two columns the
area_type and the name of the area. A compound key was made of these
to stop duplicates from being inserted and a full-text index was applied to
the area name column allowing for searching using partial bits of the name
like ”Che” for ”Chester”. To accomplish this I needed to insert every area
along with its corresponding type. These area types consisted of ”"postcode”,
"street”, "town”, "district”, "county”, "outcode”, "area”, and "sector”. The
last three are sub-parts of a postcode allowing for great greater granularity
between town and street. For this I needed to break the postcode down into
three parts. This was done you RegEx which allows you to search a string
for parts which match a certain pattern. This pattern is defined as a string
which is then passed to the function along with the string to search. Below
is the code which breaks the postcode down into its fundamental parts and
then reassembles it as each area.

M N

postcode_re = 7" (7:(?7P<al>[Gg][Ii][Rr]) (?P<dl>)
//////// (7P<s1>0) (?P<ul>[Aa]{2})) [ (7:(7:(7:(7?P<a2>
/////// [AZa—z]) (?7P<d2>[0—-9]{1,2})) | (7:(7:(?P<a3>

47



”””””” [A~Za—z | [AHa—-hJ—Yj—y]) (?7P<d3>[0—9]{1,2})) |
//////// (7:(7:(7P<ad>[AZa—z]) (?7P<d4>[0—9]|[AZa—z])) |
ffffffff (7:(?P<ab>[AZa—z]|[A-Ha-hJ-Yj—y]) (?P<d5>[0—9]
//////// T[AZa—z]))))) (?7P<s2>[0—-9]) (?P<u2>[AZa—z]|{2}
////// ))$” # RegEx for extracting postcode parts
parts = re.findall (postcode, postcode_re)[0]
outcode = parts[0] + parts[1]
area = parts [0]
sector = parts[0] + parts[l] + 7-" + parts|[2]

Once all the area types have their corresponding value they can be in-
serted into the database. I did this using a simple for loop which iterates
through the area types and their values and then passes them into an SQL
statement to be executed one by one.

area_types = [”postcode”, "street”, "town”
"district”, "county”, "outcode”
7area” , "sector” ]

areas = [sale[3], sale[9], sale[l1l], sale[12],

sale[13], postcode_parts|[0],
postcode_parts[1], postcode_parts[2]]
# Fxtracts area values from sale

values = []
for idx, area_type in enumerate(area_types):
area_data = (area_type, areas[idx])

await self._conn \
.execute ( ""7INSERT INTO areas (area_type, area)
VALUES ($1,3%2) ON CONFLICT (area_type, area)
DO NOTHING;”””  area_data)

This code worked and was able to successfully insert the areas into the
table. When I ran it with the rest of the code to insert all the sales into
the database it would only get about 10-20 transactions per second. I then
found that each insert into the areas table was taking 50ms so when that is
multiplied by 8 it’s about a second per sale which would take forever. Instead,
I researched ways to batch-insert data using the PostgreSQL library. 1 came
across an ‘executemany’ function where you pass it a list of data and a single
SQL statement and it will batch insert that data. This is more efficient as
each transaction has a set amount of overhead so by doing them all at once I

48




remove a lot of that overhead. This got the transaction time down to about
200ms which is a lot better but still a relatively slow time. The code below
is the final implementation of the batch insert.

areas = [sale[3], sale[9], sale[l1l], sale[12],
sale[13], postcode_parts[0],
postcode_parts[1], postcode_parts[2]]
# Fxtracts areas wvalues from sale
values = []
for idx, area_type in enumerate(self. _areas):
# Iterates area_types where idx is a counter
area_data = (area_type, areas[idx])
values .append (area_data)
# Create list of areas and their types
await self._conn \
.executemany (777
INSERT INTO areas (area_type, area)
VALUES (81,82) ON CONFLICT
(area_type, area)
DO NOTHING;””” | values)

# Batch inserts areas

I further researched how to improve the performance of a database when
inserting lots of data and found indexes are the main cause of slowdown as
they take a lot of CPU time to calculate. This is especially prevalent with a
full-text index as they require a lot of preprocessing. To combat this issue I
manually disabled the index whilst it is loading large amounts of data into
the database and then reenable it to process the index all at once. This would
only really work when the database is being initialised as there won’t be any
other queries being executed. When updating the database with monthly
sales the index will have to be enabled but this should work out fine as there
are a lot fewer sales to be inserted so the issue is not as amplified.

Now that the code is complete and working I need to be able to run it on
my servers. [ did this using a Docker image and defined the parameters using
a 'Dockerfile’. In this file, I select what images I want to base the container
on which would be python in my case and then install any dependencies and
set the run command. This can then be pushed to a docker image repository
on my server where it can be pulled and have multiple instances run.

49




FROM python:3.9.7 # Defines python version
WORKDIR /app
CcOPY .

RUN wget https://github.com/librdkafka/v1.9.0.tar.gz
&& tar xvzf v1.9.0.tar.gz

&& cd librdkafka —1.9.0/

&& ./configure

&& make

&& make install

&& ldconfig

# Downloads and compiles kafka library

RUN python3 -m
pip install —upgrade pip setuptools wheel
RUN python3 -m pip install confluent_kafka asyncpg

CMD [” python3”, ” __init__.py”]
# Defines the command to run the script

To test this I ran the programme and gave it the complete file containing
all of the sales from 1995 to the present day. To confirm that it was inserting
sales I was able to use the database management web UI which showed this.

Transactions per second Transactions || Commits [Jl] Rollbacks
1000
800
600
400
200

0

50




Here you can see the sales being inserted and the rate at that they are
being inserted. I left it to run and when I came back it had finished. It had
successfully inserted all of the sales as you can see in the image below.

First Page t ~
1 27837192

The little feedback I did get from my stakeholders for this module was
about the ability to update the database with new sales in a very little
amount of time meaning that they get the most up-to-date statistic and the
ability to quickly search for a specific area with auto-complete making their
workflow more efficient. It also hit the success criteria of inserting data into
a database in a third normal form where there is no duplication, avoids data
anomalies, and maintains referential integrity.

Code Layout
3.1.3 Sales Updated Checker & Uploader

Now that I can read sales from a file and then upload those sales to the
database I need to be able to keep that data up to date. This will be done
using a separate script that will pull the updated file from the land registry
to see if it has changed since the last month. If it has it will then be sent to
Kafka to be uploaded to the database. Luckily this script will use a lot of the
code from the script used to upload the complete file. The main functionality
will be getting the hash of the file and then comparing it to the previous one.
This will be done using the SHA256 hash of the file which will be compared
to the previous hash stored in a settings table in PostgreSQL. The code for
downloading the file will use the Python library called requests.

file_link = "http://prod.publicdata.landregistry.gov.uk
----s3—website—eu—west —1.amazonaws.com/

51



0s

re
pickle loads
typing List

confluent_kafka Consumer
asyncpg connect
datetime datetime
typing List
You, 3 months ago | 1 author (You)
class Ingest():
def __init__ (self, test=False) —> None:
def _load_env(self):

async def _connect_db(self):

def extract_parts(self, postcode: str) —> List[str]:

async def _insert_areas(self, sale: List, postcode_parts: List[str]):

async def main_loop(self):

async def _process_sale(self, sale):

----pp—monthly—update . txt”

file = get(file_link).content

# Downloads file wusing HTTP get request and then stores
# the content

Once the file is downloaded it needs to be hashed so that it can be com-
pared to the previous update file to see if it has changed or not. This is
done using the Hashlib library which is a standard library for python so it
is highly optimised and tested. Once the hash has been calculated it then
needs to be compared to the hash of the previous update is fetched from the
database using SQL the code for this is below.

file_hash = sha256(file).hexdigest ()

# Calculate hash of file

self. _cur.execute (”SELECT-data-FROM-settings
////////////////// WHERE-name="update_hash ’;”)
# Fetched previous hash from the database
prev_hash = self. _cur.fetchone ()

52



# Check to see if file has been inserted already
if prev_hash is not None:
prev_hash = prev_hash[0]
if file_hash != prev_hash:
# Compare hash to hash of old file
self. update_database(file , file_hash)
# Updates database with new hash
else:
print ("No-new- file -yet”)

Once the hashes have been compared if they are the same the file needs
to be inserted into the database. This is done using the same code as the
sales upload programme so I won’t show that but there is a slight difference
as a file downloaded needs to be converted so that it can be iterated through
as a list since its current form is a byte list.

csv_file = reader(StringlO (file.decode(”UTF-8")))
# Converts the bytes into a string and then into an
# in memory buffer to be read by the CSV reader

This is another module that doesn’t get any feedback from the stakehold-
ers but it does again hit one of the success criteria of being able to upload new
data to be analysed. It was also tested by setting the hash in the database
to an empty value so it would insert the update file. The output can be seen
below.

(.venv) (base) morganthomas@organs-MacBook-Air
rganthomas/Documents/GitHub/h446-NEA/codebase/update_check/check update.py
New file being uploaded

1673909378.859071 Flushing

1673909382.795545 Finished flush
7.780152797698975
(.venv) (base) morganthomas@organs—MacBook-Air

You can see it uploaded the new file in a matter of seconds and added
the new hash to the database shown in the images below.

53




Y- WHERE =~ ORDER BY
+-7 Name s data
1 Tlast_updated 1673909383.554881

2 update_hash eb3f3d378982bc3a43ab2091624647ce31f6993ca78df21b0415543eb08883¢c0

If T run the programme again it will say that there is no new file and will
then stop the programme.

. morganthomas@lorgans-MacBook-Air
rganthomas/Documents/GitHub/h446-NEA/codebase/update_check/check_update.py
No new file yet

2.353511095046997
(.venv) (base) morganthomas@Morgans—-MacBook-Air

This module has successfully passed all of the tests and works as expected.

Code Layout

3.2 Data Processor Programme

Now that the data is stored in a database and is being kept up to date it can
be processed and sent to the users. This needs to be done in an acceptable
amount of time so that the user isn’t sitting and waiting for the data to load
and be processed. To accomplish this I'm using a few technologies. The
first one is multiprocessing which gives me the ability to run aggregations
on the data in parallel making them run quicker by as many cores as I
allocate to that aggregation. I will also use Kafka to give me the ability to
run multiple instances of the data Processor and share the queries between
them increasing the number of queries I can run at once by the number of
instances I have running. On top of this will be a query cache where the
results will be stored along with the date when they were calculated. This
means that when a query comes in it can be compared to the cache and if
there is one in the cache it will be returned. This will reduce the number
of calculations dramatically as once one area has been aggregated it won'’t
need to be done again for another month or so when more data is released.
The sub-components of this module will be the data loader to fetch the sales
from the database; the aggregator which produces the stats from the sales;
the processor which coordinates the data loader and aggregator along with

o4



hashlib sha256
io StringIO

0s environ
pickle dumps

confluent_kafka Producer
psycopg2 connect
requests get

csv reader

You, 2 months ago | 1 author (You)
class checkForUpdate():
def __init_ (self) -> None:

def _load_env(self)

def _fetch_file(self):

def _update_database(self, file, file_hash):

def _send_file_db(self, file):

def run(self):
._fetch_file()

checking the cache and receiving new queries and finally the web API which
allows users to submit and monitor queries along with searching for an area.

3.2.1 Data Loader

To produce accurate statistics the programme needs to be able to access the
data reliably and make sure it maintains integrity. This is done using Post-
greSQL which is an ACID-compliant database. ACID stands for atomicity,
consistency, isolation, and durability. Atomicity means that a transaction
will either succeed or fail so you won’t get part of it working and some of
it not. This means that only the full data is returned and not part of it so
the statistics will always be accurate. Consistency means that all the data
will comply with the rules of the database so , for example, a house must
have a postcode and a house number so therefore you can be sure that all
the data is there. Durability means that once a transaction is committed it
will always be there unless changed so even if the server crashes as long as

95



the transaction has been committed it will be there.

When accessing the data it will need to be joined from the 3 tables to
get all the appropriate data. The most efficient way to do this is by reducing
the number of rows it needs to search and then joining them as opposed to
joining all the tables and then filtering. This is done by getting the area
you want to search and then getting all the postcodes in that area and then
getting all the houses which aren’t of the ’other’ type and then getting all
the sales that have a ppd_cat of "A’. The query for this is below.

SELECT s.price, s.date, h.type, h.paon, h.saon,
h.postcode, p.street , p.town, h.houseid

FROM postcodes AS p

INNER JOIN houses AS h ON p.postcode = h.postcode
AND p.outcode = 'CH64’

INNER JOIN sales AS s ON h.houseid = s.houseid
AND h.type != 0O’

WHERE s . ppd_cat = ’A’;

The line where it says "p.outcode = ’CH64"” can be swapped to work with
any area type like a county or town. This will be done dynamically depending
on what arguments are passed to the data loader. The area_type will be
inserted using a python f-string as it has a discrete value so there is no need
to escape it. The area name will be passed as an argument to the execute
function along with the query string. The code for this is below.

query = {7”7”’SELECT s.price, s.date, h.type, h.paon,
h.saon, h.postcode, p.street, p.town, h.houseid
FROM postcodes AS p
INNER JOIN houses AS h ON p.postcode = h.postcode
AND p.{self.area_type} = %s
INNER JOIN sales AS s ON h.houseid = s.houseid
AND h.type != 'O’
WHERE s.ppd_cat = "A’;

self. _cur.execute(query, (self.area,))

# Frecutes query and inserts area

Before running this query though it needs to verify that the area and
area_type are valid so that time is wasted running an expensive query. To
verify the area_type the value is compared to a list of valid types. Once it has

56



passed that it runs a query to check that there are corresponding postcodes
for that area. Once it passes all of these tests only then is the main query
run. This reduces the number of unnecessary queries that are executed so
that the database isn’t bogged down.

self._areas = ["postcode”, "street”, "town” ,
"district”, "county”, "outcode”
7area” , "sector” ]

if self.area_type not in self. _areas:

# Checks if area type is in list

# and raises error if mnot

raise ValueError(”Invalid-area-type”)
self. _cur.execute ({”SELECT- postcode
//////////////// FROM- postcodes
//////////////// WHERE- { self . area_type} -=-%s
//////////////// LIMIT-1;7,

(self.area,))

# Searches postcode table for area
if self._cur.fetchall() is not []:

return True

# Returns true if result isn’'t empty
else:

raise ValueError (f”Invalid
/////////////////// {self.area_type}-entered”)

# Raises error if no postcodes returned

Below is a table with testing inputs their expected output and actual
output and as you can see it worked perfectly.

Input Expected Actual
postcode, CH2 1DE True True
jwnjdbf, CH2 1DE Inavlid Area Type Invalid Area Type
postcode CH7384 342 Invalid postcode Invalid postcode

entered entered

Now that the area and area type has been verified the data is fetched from
the database using the query from before. This is done using the PostgreSQL
Python library but the synchronous version as the packages I plan to use to
do aggregations are not asynchronous compatible. This part is fairly simple
as it uses a lot of similar code from the previous parts it is simply executing

o7




an SQL query and then storing the results in a variable and then raises an
exception if there are no results. To store the data I'm using a Pandas data
frame as it allows me to easily convert it into a Dask data frame later on for
parallel processing. You can see this process in the code below.

query = {77”SELECT s.price, s.date, h.type, h.paon,
h.saon, h.postcode, p.street, p.town,
h.houseid
FROM postcodes AS p
INNER JOIN houses AS h ON p.postcode = h.postcode
AND p.{ self.area_type} = %s
INNER JOIN sales AS s ON h.houseid = s.houseid
AND h.type I= 'O’
WHERE s.ppd_-cat = "A’;
self. _cur.execute(query, (self.area,))
# Frecutes SQL query
data = self. _cur.fetchall ()
# Returns results from query
if data = []:
# Raises error if no results returned
raise ValueError (f”"No-sales-for-area-{self.area}”)
else:
self._data = pd.DataFrame(data)
# Stores results in pandas dataframe

Once this has been run the rest is handed off to the aggregator to process
and reduce the data into statistics to give meaningful insight. Below you can
see the output for the data loader when asking for sales from the 'CH’ area.

Code overview.

3.2.2 Data Aggregator

The data aggregator is the main and most important part of the entire appli-
cation. This is because it has to be highly performant to reduce the amount
of time it takes for a query to run and highly accurate to provide the correct
statistics. To achieve this I'm going to use a service called Dask which is
made up of 3 components. A scheduler distributes tasks between workers,
workers who then execute those tasks, and then a python library to interact

58




_name__ == "__main_":
psycopg2
conn = psycopg2. connect ("postgresql://house_data: LriFahwbJwfv2388neiluOMI@192.168.4.30:5432/house_data")
loader = Loader("CH", "area", conn.cursor())
print(loader.data.head())

Cleython ++ @ @ ~ X

(.venv) (base) morganthomas@forgans-MacBook-Air [ main +

datetime datetime, timedelta

polars pl

typing List
You, 1 second ago | 1 author (You)
class Loader():
def __init_ (self, area: str, area_type: str, db_cur) -> None:
def verify_area(self):
def fetch_area_sales(self) —> List:

def _format_df(self, data):

@property
def data(self) —> pl.DataFrame:

@property
def latest_date(self):

with the scheduler and workers. Dask is built on top of the most popular
data processing library for Python which is Pandas. It works by taking the
data you give it and then dividing that up into smaller Pandas data frames
running on the workers so the operations can be applied in parallel and then
collected at the end.

The first part needed is a Dask cluster which can be set up using the
docker-compose which is as simple as writing a few lines and then uploading
them to the server. Below are the settings required to run a Dask cluster.

# Data Processer
dask_scheduler:

59



image: "ghecr.io/dask/dask”
restart: "always”
ports:
— 7 8787:8787”
— 78786:8786"
networks:
— net
command: [”dask—scheduler” ]

dask_worker:
image: ”ghcr.io/dask/dask”
deploy:
mode: replicated
replicas: 4 # Sets amount of workers
command: [”dask—worker”, "tcp://dask_scheduler:8786" ]
networks:
— net

Now that I have a desk cluster running I need to be able to communicate
with it using python. This is done using the Dask library as seen below.

def __init__(self , data):
self. _load_env () # Loads enviroment variables
self. _dask_client = Client (self. DASKSCHEDULER)
# Connects to dask cluster
print (self. _dask_client.ncores())
# Prints info about cluster to wvalidate connection

The aggregator uses a similar structure to the data ingest module where
it loads environment variables for all of the connections like the Dask cluster
and the PostgreSQL database. Now that it is connected I need to upload
the data fetched using the data loader. This can be done in one line but
after some testing, I realised it’s not quite plug-and-play and needed a bit
of tuning. As stated before the data is broken down into lots of little data
frames but the amount of data frames depends on the size of the data you are
using so the general rule of thumb is about 10 for every 100MB of data. To
calculate the number of partitions required I had to calculate the size of the
data frame and then use that to say how many partitions. Luckily pandas
have a function which returns the size in memory of the data frame. Below

60




you can see the implementation of this which is a continuation of the code
above.

self. _data = data.data
self._df mem = data.mem_consump
# Gels size of dataframe
partitions = 10 if self._df mem < 100
else int (10 * (self._df_mem % 100))
# Calculates amount of partitions needed
self._dd_df = dd.from_pandas(self._data,
npartitions=partitions).persist ()
# Uploads data frame to the cluster and
# persists it in memory

Now that the data is uploaded to the cluster I can crack on with the
aggregation functions. To start with I created a function to remove the
outliers from the dataset as I would need to do this before all aggregations.
This also meant that it had to be as efficient as possible as it would get run a
lot. The function needed to calculate the mean of the data than the standard
deviation and then filter the data removing all data greater than the mean
plus 3 times the standard deviation.

def remove_outliers(self):
std = self._dd_df["price”].std ()
# Calculates standard deviation
mean = self._dd_df[’ price’].mean()
# Calculates mean
filtered_df = self._dd_df \
.loc[(self._dd.-df[”price”]
< mean+(sd_threshxstd))
& (self._dd_df[”price”]
> mean—(sd_threshxstd)) |
# Filters database
return filtered_df

After testing this function on a range of datasets varying in size from a
few thousand sales to a quarter million I realised that it was unbelievably
slow. It would take anywhere from 1 minute for the smaller dataset up to 25
minutes for the larger ones. After checking over my code numerous times and
asking people online in forums I realised my mistake. I had misinterpreted

61




Dask, instead of it just being a multiprocessing library for python to speed
up data aggregations it was aimed at processing humongous datasets ranging
anywhere from a couple of hundred gigabytes to terabytes. With those sorts
of datasets you're not expecting it to be done anytime soon so you can afford
more overhead but when that overhead is applied to datasets of a much
smaller size it is completely disproportionate which results in queries taking
an unnecessary amount of time.

After realising my issue I started researching python libraries for paral-
lelised data processing and came across a library called Polars. Polars is a
library written in Rust so it is as performant as C or C++ but is much safer
when it comes to memory management and garbage collection. This makes
it a highly attractive systems programming language. Polars was designed
as a competitor to pandas which is written in pure Python so suffers from
poor performance. Below is a graph comparing the time taken to group data
and perform aggregations on it. You can see Polars is almost 2x quicker and
as the dataset scales Polars only gets quicker relative to Pandas.

Implementing Polars

Fortunately, Polars has a very similar interface to Pandas as it wanted to
be used by people who use Pandas in their everyday workflow. This meant
that implementation was a rather trivial task and it allowed me to use the
pseudo code from my design to help me. Unlike Dask Polars is designed to
run locally on your machine so a cluster is not needed. This allowed me to
remove a lot of code that was required to connect to the cluster and initialize
the dataset on it. I also had to make a slight change to the data loader as
that returned the data as a Pandas data frame since that was compatible
with Dask which was as simple as swapping ‘pd’ for ‘pl’ and using ‘import
polars as pl’ instead of ‘import pandas as pd’. Now that I was using Polars
instead of Dask I could move onto developing the code which will produce
the statistics.

Property Type Proportions

This statistic tells the user how many of each type of property is in an area
along with its corresponding proportion. To accomplish this it will have to

62



group all the sales by their property type and then return a count of each
one along with the total number of properties to calculate the proportions.
Due to the possibility of there being multiple sales for one property, it will
also have to filter out all duplicates. Once this is all done the data will be
returned as a dictionary. The code for this is below.

def calc_type_proportions(self) —> Dict:

df = self._data # Copies dataframe to process

df = df.unique(subset=["houseid”|) # Filters out
duplicates

df = df.groupby(”type”).count () # Gets count of
each property type

data = df.to_dict (as_series=False) # Converts
results to a dict

return data

It was then tested by fetching the data for the ‘CH* area and then passing
it to be aggregated. Below is the code for this.

import psycopg?2
import time

start = time.time ()
conn = psycopg2.connect ("<DATABASE URE") # Connects to
database
data_loader = Loader ("CH”, ”area”, conn.cursor()) #
Fetches sales for area
print (”loaded_data-=-" 4+ time.time()—start)

agg = Aggregator(data_loader) # Passes sales to
aggregator

res = agg.calc_type_proportions () # Calculates
proportions

print (res) # Prints results

Below is a screenshot showing the output after running this code. It
shows it was able to successfully output the proportions for this area along
with the total amount of properties.

63




sers/morganthomas/Documents/GitHub/housestats/da
mas/Documents/GitHub/housestats/data-processor/processor/aggre

319, 16071, 68431]}

Monthly Average Price

This is one of my key statistics as it gave a view of the property market on
a month-by-month basis. It would calculate the mean price of house sales
each month for all property types and then for each individually. By doing
this I allow the users to get a more tailored look at the data for their needs.
I’ll accomplish this by first splitting the data into their respective types and
then sorting the sales by date. These sales will then be grouped by month
and the mean will then be calculated. This will be repeated for each house
type and then the same will be done for all house types at once. Below is
the code for this.

def _calc_average_price(self) — Dict:
df = self. _data.partition_by ("type”, as_dict=True)
# Splits data into separate property types

house_types_means = {}
for house_type in df:
temp_df = df[house_type]
house_types_means |[house_type] = temp_df \
.sort ("date”) \
# Sorts sales
.groupby_dynamic (" date” , every="1mo”) \
# Groups sales into months
.agg(pl.col(”price”) . mean()) \
# Calculates the mean
.to_dict (as_series=False)
# Converts it to dict

all_sales = self._data
house_types_means|[” all”] = all_sales \
.sort ("date”) \
.groupby_dynamic (" date” , every="1mo”) \
.agg(pl.col(”price”) . mean()) \
.to_dict (as_series=False)

64




data = {

"type”: [key for key in sorted (
house_types_means) |,

# List all property types alphabeticly

"prices”: [house_types_means|[key][” price”] for
key in sorted(house_types_means)]|,

# List all average prices corresponding order
to property types

"dates”: house_types_means|[” all” |[” date” |

# List all of the dates

}

return data

I tested this using the same area as the proportions function so the testing
code was the same except instead of calling ‘calc_type_proportions’ I called
‘calc_average_price’. Unfortunately, the output for this is rather long so I
can’t show it below as it shows the average sale price for every month since
1995 for every property type. To see if my results were correct I compared
the most recent points against the Land Registry Price Index which can be
found here https://landregistry.data.gov.uk/app/ukhpi. When I compared
the numbers I realised my results were all quite a bit higher than the Land
Registry’s.

My initial conclusion was I hadn’t removed the outliers from the dataset.
I had implemented this before with Dask so switching to Polars was a breeze
due to how similar they are.

std = all_sales.select(pl.col(”price”)).std().
collect () [0, O]

mean = all_sales.select(pl.col(”price”)).mean()
.collect () [0, O]

temp_df = all_sales.filter ((pl.col(”price”) <
mean+(2xstd ) ) )

After implementing this I again tested it but the results were still off from
the House Price Index. I then did some reading on the Office for National
Statistics website as they publish how they calculate the HPI. There they
stated that instead of using the arithmetic mean they use the harmonic
mean which helps reduce the effect large sales have on the average. The

65




harmonic mean can be calculated by multiplying all of the items together
and then finding the nth route where n is equal to the number of items in
the list. After doing some further reading on it I realised that the numbers
can quite easily get out of hand, for example, house sales are in the hundreds
of thousands so each time I multiply them together I am increasing the
product by 100000 each time which when done 10,000 times produces a very
large number potentially causing it to overflow which would then crash the
programme this. To combat this people recommend using log rules to find
the mean as it can be done more efficiently.
rxx = logr + logx
Y = logx /logy

Using these two rules above I can calculate the harmonic mean by getting
the log of all the values and calculating the arithmetic mean of them and then
doing e where z is the result of the arithmetic mean. This is implemented
below in Polars.

house_types_means|[house_type] = temp_df \
.sort ("date”) \ # Sort sales by date
.groupby_dynamic (" date” , every="1mo") \ # Group by
month
-agg (
pl.col (7 price”) \
dog () \ # Log of all wvalues
.mean () \ # Arithmetic mean
.exp() # e’z of result

) A\

.to_dict (as_series=False) # Convert to dict

I then tested this and got results that were within a few thousand of
the Land Registries. I put the error down to the Land Regsitry including
Scottish property sales which aren’t included in my data.

Quantity & Volume

These two statistics are very similar and are hence calculated in a very similar
manner. The structure of the code will also look very similar to the monthly
average price as these are calculated for each property type and then for
all types and it is done on a month-by-month basis. Polars had an inbuilt
method for count and sum so I can copy the code for the average and simply

66




change the aggregation function for each one. The function will be the same
for each one minus a few variable name changes so for brevity I'll just show
what the line will be for volume and quantity.

# For sale quantity
cagg(pl.col(”price”).count())

# For price wvolume
.agg(pl.col(”price”) .sum())

Since the Land Registry doesn’t publish these statistics and I couldn’t
find anywhere that did I will just have to assume that the code works based
on the output I received since I have nothing to compare it to. Also since the
average code works and these share a lot of the same code it would be logical
to assume they also work. Similarly to the average function the output of
this is a long list of numbers so I don’t see much point in showing the output
for each one.

Quick Stats

To give the user a brief and up-to-date view of an area at the top of the page
will be the most recent figure for each statistic along with how it compares
to the previous month. To do this I will need to get the most recent number
off the top of each list and the second most recent. The percentage change
will then be calculated by dividing the most recent by the oldest. Once I
have the percentage change and the most recent figure they will be added to
a dictionary. The dictionary will be laid out as shown below.

{

"current_month”: 0,
"average_price”: 0,
"average_change”: 0,
"current_sales_volume”: 0,
"sales_volume_change”: 0,
"current_price_volume”: 0,
"price_volume_change”: 0,
"expensive_sale”: 0

}

To get all of these values I will need to have already run all of the other

67




aggregations. Once they have been run I will then go through each one doing
the aforementioned. The code for this is below. It will also find the most
expensive sale for the current month. To do this will has to filter the sales
to only ones from this month. Then it searches the sales to find which one
has a value equal to the greatest value in the table. This will be the most
expensive sale of the month

def _quick_stats(self, data) —> Dict:

current_month = data|[” average_price” |[”dates” ][ —2]
# Gets the current month
current_average = data|” average_price” |[” prices”
(4] 2]
# Gets the most recent average
prev_average = data|” average_price” |[” prices”
J[4]1 3]
# Gets second most recent average
current_average_change = round(100%(current_average

—prev_average)/prev_average ,2)
# Calculates the percentage change to 2 decimal

places

current_sales_vol = data[”monthly_sales_volume” |[”
volume” | [4]] —2]

# Gets most recent sale wvolume

prev_sales_vol = data[”monthly_sales_volume” |[”
volume” | [4]] — 3]

# Gets second most recent sales volume

current_sales_vol_change = round(100x(
current_sales_vol—prev_sales_vol)/prev_sales_vol
,2)

# Calculates the percentage change to 2 decimal
places

current_price_vol = data[”monthly_price_volume”][”
volume” |[4]] — 2]

# Gets most recent price wvolume

prev_price_vol = data|[”monthly_price_volume” |[”

68




volume” |[4]] — 3]

# Gets second most recent price volume

current_price_vol_change = round(100x(
current_price_vol—prev_price_vol)/prev_price_vol
,2)

# Calculates the percentage change to 2 decimal
places

expensive_sale = (self._data
.filter (pl.col(”date”).is_between (current_month
, current_month + timedelta(days=31)))
# Filters sales to this month
.filter (pl.col (" price”) = pl.col(”price”) .max
()

# Searches for sale with marimum price

) [0,0]

# Puts results into a dictionary to be returned
quick_stats = {

"current_month”: current_month ,

“average_price”: current_average ,

"average_change”: current_average_change ,

"current_sales_volume”: current_sales_vol ,

"sales_volume_change”: current_sales_vol_change
b

7current_price_volume”: current_price_vol ,

"price_volume_change”: current_price_vol_change
)

"expensive_sale”: expensive_sale

}

return quick_stats

I tested this code using the area I've been using for all the other tests
and it worked perfectly. Below are the results of this test, the error message
is simply a warning that can be ignored.

69




(.venv) (base) x morganthomas@organs-MacBook-Air /Users/morganthomas/Documents/GitHub/h446-NEA/.venv/bin/python /Use
rs/morganthomas/Documents/GitHub/h446-NEA/codebase/data_processor/aggregations.py

loaded_data - 15.810256958007812

/Users/morganthomas/Documents/GitHub/h446-NEA/.venv/lib/python3.10/site-packages/polars/internals/expr/expr.py:3499: FutureWarning: Default behaviour will change

from excluding both bounds to including both bounds. Provide a value for the ‘closed' argument to silence this warning.

warnings.warn(
{'current_month': datetime.datetime(2023, 1, 1, @, @), 'average_price': 194298.6116216708, 'average_change': 4.29, ‘current_sales_volume': 354, 'sales_volume_cha
nge': -35.87, 'current_price_volume': 79093647, 'price_volume_change': -33.59, 'expensive sale': 825000}

After this success, I then decided to test it on some other areas so I put
my postcode in to get some results. I encountered an IndexError when I ran
this test. After doing some investigating I realised it was because areas with
fewer sales might not have any sales for this month so when it goes to fetch
the most recent average it isn’t there as there have been no sales in that
month. Below you can see the error message for this.

(.venv) (base) x morganthomas@morgans-macbook-air /Users/morganthomas/Documents/GitHub/h446-NEA/ . venv/bin/python /Use
rs/morganthomas/Documents/GitHub/h446-NEA/codebase/data_processor/aggregations.py
1 ata - 0.4053001403808594
k (most recent call last):

sers/morganthomas/Documents/GitHub/h446-NEA/codebase/data_processor/aggregations.py”, line 155, in <module>

agg.get_all_data()

ers/morganthomas/Documents/GitHub/h446-NEA/codebase/data_processor/aggregations.py”, line 142, in get_all data

ts"] = self._quick_stats(data)

"/Users/morganthomas/Document. /h446-NEA/codebase/data_processor/aggregations.py", line 104, in _quick_stats
current_average = data["average_price"] ["prices"][4] [-2]
IndexError: list index out of range

To remediate this error I added try statements around the bits of code
where it fetches the most recent stats. These allowed me to catch the In-
dexErrors and then set the values to zero as a default. The code for this is
below.

try:

current_sales_vol = data[”monthly_sales_volume” |[”
volume” | [4]] —2]

prev_sales_vol = data[”monthly_sales_volume” |[”
volume” | [4]] — 3]

current_sales_vol_change = round (100x(

current_sales_vol—prev_sales_vol)/prev_sales_vol
,2)
except IndexError:

current_sales_vol = 0
current_sales_vol_change = 0
try:
current_price_vol = data|[”monthly_price_volume” |[”

volume” |[4]] — 2]

70




7

prev_price_vol = data|[” monthly _price_volume” ]|
volume” | [4]] — 3]

current_price_vol_change = round(100x(
current_price_vol—prev_price_vol)/prev_price_vol
,2)

except IndexError:
current_price_vol = 0
current_price_vol_change = 0

Now the quick stats function will work for any area I give it and if there
is any missing data it will return zero as the value by default.

Run Function

This function is what ties all the other functions together and then returns
the data. The data will be returned as a dictionary. There isn’t much to this
function as it simply calls the functions and then stores the returned values
in a dictionary.

def get_all_data(self) — Dict:

data = {
7average_price”: self. _calc_average_price(),
"type_proportions”: self. _calc_type_proportions
OF
"monthly_sales_volume”: self.
_calc_monthly_volume (),
"monthly_price_volume”: self.

_calc_monthly_price_volume (),

}

data[” quick_stats”] = self._quick_stats(data)
# Passes aggregations to quick stats functions

return data

There isn’t much need to test this function as long as all the other func-
tions have been tested and are in working order this one will work fine. Now
that all of the aggregations have been programmed I can move on to inte-
grating it with Kafka to receive jobs.

71




Code Layout

typing i Dict

0 polars as pl
load_data Loader
datetime timedelta

S Aggrega

def __init data: Loader) —> None:
elf._data data.data
elf._latest_date = data.latest_date

def _calc_average_price(self) —> Dict:

def _remove_outliers(self, df: pl.DataFrame):

def _calc_type_proportions(self) —> Dict:

def _calc_monthly_volume(self) —> Dict:
def _calc_monthly_price_volume(self) —> Dict:
def _quick_stats(self, data) —> Dict[str, floatl:

def get_all_data(self) -> Dict:

3.2.3 Intergrating With Kafka

To analyse areas effectively the processing needs to be detached from the
webserver. This will prevent the web server from getting clogged up with
requests and stop anyone else from accessing the website. Instead, the user
sends a request to analyse an area and then they are given a link to check
if it has been processed or not. To implement this [ need to create a Katka
client which can check the database to see if an area has been cached or not;
check if that cache is out of date; load data using the ‘loader’; a process that
data using the ‘aggregator’ and then update the cache.

Firstly I need to create the __init__ function to connect to the database
and Kafka. This will be very similar to the other modules so I won’t go into
detail about it. It will also need to load the credentials for the databases
from environment variables which will be a function. Below is the code for
both of these.

def __init__(self):
self. _load_env ()
self. _sql_conn = psycopg2.connect(f” postgresql://{
self . SQL.USERNAME}:{ self . SQLPASSWORD}@{self .
SQL_HOST}:5432/ house_data”)
# Connect to the SQL database

72




self._cur = self._sql_conn.cursor ()

self . _mongo_conn = MongoClient ({”mongodb://{ self.
MONGO_USERNAME} : { self . MONGOPASSWORD}Q{ self .
MONGOHOST}:27017/7authSource=house_data”)

# Connect to MongoDB for caching

self. _mongo.db = self._mongo_conn|[” house_data” |

self._consumer = Consumer ({
"bootstrap.servers : self. KAFKA,
"group .id ’: "PROCESSOR’ ,
"auto.offset .reset’: ’earliest’

1)
# Connect to Kafka

def _load_env(self):

# Loads the enviroment wvariables

self . DB = os.environ.get ("DBNAME")

self . SQL.USERNAME = os.environ . get ("POSTGRES_USER”
)

self . SQL.PASSWORD = os.environ.get (”
POSTGRES PASSWORD” )

self. SQL.HOST = os.environ. get ("POSTGRES HOST” )

self . KAFKA = os.environ. get ("KAFKA”)

self . MONGOHOST = os.environ. get ("MONGOHOST”)

self . MONGO.USERNAME = os.environ.get (”
MONGO_USERNAME” )

self . MONGOPASSWORD = os.environ.get (”
MONGOPASSWORD” )

Now that the boilerplate code has been set up I can start developing
the first of the key functions which is the cache checker. This will work by
generating the query ID based on the area and area type. These will then
be used to search mongoDB. If a result is found it will then check if it is out
of date or not. If it is out of date it will return False and if it isn’t it will
return True. If no result is found at all it will return False.

To generate the query ID the area and area type will simply be concate-
nated together and have any spaces removed. I'll create a function for this

73




as [ will be performing it a lot throughout the process. The code for this is
below

def _calc_query_id(self, area: str, area_type: str) —>
str:
query_id = (area + area_type).replace(”-7, "")
# concatenate strings and remove spaces
return query_id # Return result

Input Expected Actual

CHESTER, TOWN CHESTERTOWN CHESTERTOWN

CH2 1DE, | CH21DEPOSTCODE | CH21DEPOSTCODE
POSTCODE

CH, AREA CHAREA CHAREA

Now that I can generate the query id to search and have tested it using
the table above I need to be able to get the date the dataset was last updated.
This will be done using SQL as the update checker module writes the date
and time it is updated to the database. If there is no date recorded in the
database or an incorrect date provided it will return 01/01/1970 00:00:00
so that it will be forced to update the cache no matter what. To fetch the
date from the database I will use a fairly basic SELECT SQL query which
is below.

"SELECT - % -FROM- settings -WHERE-name -="last _updated ’”

The SQL query will return a UNIX timestamp which is an integer rep-
resenting the number of seconds since 01/01/1970 00:00:00. This will then
need to be converted into a python datetime object so that I can perform
comparisons with it. Putting this together with the SQL the code will look
like this.

def _get_last_updated(self):
self. _cur.execute (”SELECT- % -FROM- settings -WHERE-
name-=-"last_updated ’”)
last _updated = self. _cur.fetchone ()
# Fetch timestamp from database

if last_updated == None:
return datetime.fromtimestamp (0)
# Return default time if no timestamp found

74



else:
if last_updated[1l] is not None:
return datetime.fromtimestamp (float (
last _updated [1]))
# convert timestamp to datetime object
else:
return datetime.fromtimestamp (0)
# Return default time if invalid timestamp

I tested this code too by changing the value in the database and checking
to see if it corresponded with the date returned and as you can see in the
table below it worked.

Database Value Expected Actual
1680284312 31 03 2023 17:38:32 31 03 2023 17:38:32
GMT+0000 GMT+0000

1230454412 28 12 2008 08:53:32 28 12 2008 08:53:32
GMT+0000 GMT+0000

wudgbk.qwijf 01 01 1970 00:00:00 01 01 1970 00:00:00
GMT+0000 GMT+0000

Nothing 01 01 1970 00:00:00 01 01 1970 00:00:00
GMT+0000 GMT+0000

Now that I have both of these functions working I can start programming
the function to check the cache. It’s quite a simple function and only consists
of a few lines, generating id; searching the database and compare dates.
Below is the code for this.

def _check_cache(self, area, area_type) —> bool:
query_id = self. _calc_query_id (area, area_type)
# Generate query id
query = self._mongo._db.cache.find_one({”_id":
query_id })
# Search database for cached query
if query is not None:
last_updated = self. _get_last_updated ()
# Get date of last updated
if query[”last_updated”] < last_updated:
# Compare dates
return False # Isn’t in cache
return True # Is in cache

75



else:
return False # Isn’t in cache

Unfortunately, I won’t be able to properly test this code till there are
queries that have been cached so I will have to come back and test this
later once I have developed more of this. Now I can develop the function to
load the data and then aggregate it so it can then be cached. This function
will simply be calling the loader module and then pass that data into the
aggregator module. Each part will be timed so that I can evaluate it against
my success criteria. Firstly it will load the data using the loader module so
the function for this is below.

def _get_arca_data(self, area: str, areca_type: str):
lodr = Loader(area, area_type, self._cur)
# Pass area details and database cursor to loader
return lodr

Once the data is loaded it will then need to be aggregated using the
function below.

def _get_aggregation(self, loader: Loader) —> Dict:
agg = Aggregator(loader) # Init aggregator
data = agg.get_all_data () # Run aggregations
return data

Now both of these functions will be tied together along with some logic to
time each part and save it to a variable to be written to the database later.
The code for this function is below.

def _get_stats(self, area: str, area_type: str) —> bool

load_start = time.time () # Start timer

data = self. _get_area_data(area, area_type)

# Load data

load _time = time.time()—load_start # End timer

if data is not None:

start = time.time () # Start timer
stats = self._get_aggregation (data) # Aggregate
time_taken = time.time ()—start # End timer

76




query_id = self. _calc_query_id (area, area_type)
# Generate ID

self._cache_query(stats, query_id, area,
area_type , time_taken , load_time)

# Save query to cache

return True

else:
return False

This function won’t be able to be tested since it uses the ‘_cache_query/()’
function which hasn’t been written yet so it will all be tested together.

Now moving on to the query caching function. This function will need to
take all of the data and statistics and then store them in the database. Data
is stored in MongoDB in the BSON format which is essentially the same as
JSON except it is slightly more performant and better for databases. Each
entry is called a document and will be laid out like this.

{
7 _id”: query_id ,
"area” : area,
“area_type”: area_type,
"data” : stats
7last_updated”: datetime.now()
7exec_time”: exe_time
"load_time”: load_time

If a query has already been cached but is out of date the document will
need to be updated instead of simply inserting it. This is done by using
the $set function which allows you to modify the properties of an existing
document. The code for this is quite long but is only one of two functions
being called depending on the scenario.

def _cache_query(self, stats: Dict, query_id: str, area
str, area_type: str, exe_time: float, load_time:

float):
query = self._mongo._db.cache.find_one({”_id":
query_id })

# Check cache for exisiting document
if query is not None:

77




self. _mongo_db.cache.update_one (
{”_id”: query_id},
{7 $set”: {
"data”: stats
"last_updated”: datetime.now()
7exec_time” : exe_time ,
"load_time”: load_time

}
}
)

# Updated exisiting document

else:
document = {
7 _id”: query_id ,
“area” : area,
“area_type”: area_type,

"data” : stats
”last_updated”: datetime.now()
"exec_time”: exe_time ,
"load_time” : load_time
}
self. mongo_db.cache.insert_one (document)
# Insert new document

Now that I have the caching function written I can test all the other
functions. This will be done by giving it different areas and then seeing if
they are added to the MongoDB database and then trying to analyse them
and seeing it not process them as they are cached. Afer that I will then
modify the date of one and get it to update them.

processor = Processor ()
if not self._check_cache(area, area_type):
print (query, 7—-Aggregating-data”)

self. _get_stats (area, area_type)
else:

print (" Cache- hit)

The images below are from after running the test initially and as you can

78




see it successfully inserted them into the database.

_id: "COUNTY DURHAMCOUNTY"

area: "COUNTY DURHAM"

area_type: "COUNTY"

last_updated: 2023-02-15T09:35:50.597+00:00
timings: Object

stats: Object

(»)  _id: "conwvcounTy® \L} @ @ @
area: "CONWY"
area_type: "COUNTY"
last_updated: 2023-02-15T09:35:51.788+00:00
» timings: Object
» stats: Object

Obiect

[ then ran the same test again and got his printout in the terminal showing
that it was able to detect the documents in the cache so didn’t process them
again.

(.venv) (base) morganthomas@morgans-machook-air /Users/morganthomas/Documents/GitHub/h446-NEA/.venv/bin/python /Users
/morganthomas/Documents/GitHub/h446-NEA/codebase/data_processor/main. py
‘

Cache hit
Cache hit
(_venv) (base) morganthomas@morgans-macbook-air > [ nain + 3

I then manually edited the date on the first one to be before the last
update.

(:::J _id: "COUNTY DURHAMCOUNTY"
area: "COUNTY DURHAM"
area_type: "COUNTY"
last_updated: 2000-01-01T00:00:00.000+00:00
v timings: Object
loader: 2.5276362895965576
aggregate: 0.9873006343841553
aggregate_average: 0.17890667915344238
aggregate_proportions: 0.01289439 0.17890667915344238
aggregate_qty: 0.20807886123657227
aggregate_vol: 0.19678521156311035
aggregate_perc: 0.3857400417327881
» stats: Object

The image below is the result of running the script again and as you can
see it updated and changed the date.

79



_id: "COUNTY DURHAMCOUNTY"
Remove document 'coUNTY DURHAM"
area_type: "COUNTY"
last_updated: 2023-02-22T00:00:00.000+00:00
v timings: Object
loader: 2.5276362895965576
aggregate: 0.9873006343841553
aggregate_average: 0.17890667915344238
aggregate_proportions: 0.012894392013549805
aggregate_qty: 0.20807886123657227
aggregate_vol: 0.19678521156311035
aggregate_perc: 0.3857400417327881
» stats: Object

All of these tests conclude that the caching and processing part is fully
functional. Now all I need to do is programme the Kafka client so it can
receive jobs and execute them. Fortunately, I have already done this for the
sales ingest module so I can borrow some of the code from there to make it
easier. It will need to recieve the message; decode it to the area and area
type and then pass these onto the other functions to analyse and then cache
if needed. The code for this is below.

def main_loop(self) — None:
self . _consumer.subscribe ([? query_queue”])
# Subscribe to job queue
print (" Waiting - for - queries” )
while True:
msg = self._consumer.poll (1.0) # Fetches the
latest message from kafka
if msg is None: # Checks the message is empty
continue
if msg.error(): # Checks there are no errors
print (" Consumer- error: -{}” .format (msg. error
0)))
continue
query: tuple = loads(msg.value()) # (area,
area_type)

80




query = tuple (map(lambda x: x.upper(), query))
# Makes all items upper case

print (f”{time.time () }-—-{query [0]}({query[1]})”

)

if not self. _check_cache(xquery): # Checks

cache
print (query, "—- Aggregating-data”)
self. _get_stats (xquery) # Gets stats
else:
print (query, ”7—-Cache-hit”)
continue

As you can see this is very similar to the sales ingest module with its
layout. One of the features I added is to make all of the letters in the query
uppercase to make sure that they are all stored in uppercase so that there
are no duplicates for validity. To test this I will have to make a short script
to send jobs along this Kafka queue.

list _bytes = dumps((”CH”, "AREA”)) # Converts
list to byte array
self. _producer.produce(”new_sales” , list_bytes)
# Send each sale as string to kafka
self . _producer.poll (0) # Wait for message to
send

I made sure to run the aggregator and then run this script. The result of
this script is below.

@ _id: "CHAREA"

area: "CH"

area_type: "AREA"

last_updated: 2023-03-15T12:03:52.126+00:00
» timings: Object

» stats: Object 2023-03-156T12:03:562.12€

As you can see it was able to successfully receive the job and then aggre-

81




gated it and store the results in the cache. The aggregator completely works
now and can be integrated into the web API once that is built. Fortunately,
due to the design of the aggregator, new statistics can be added by simply
adding another aggregation function to the aggregator class and editing the
dictionary to include it. This will allow me to improve upon it in the future
and add features requested by my stakeholders. Below is the code for the
Kafka client and caching functions.

Aa ab, * 10f1

pickle inm
typing inm

t psycopg2

aggregations import Aggregator
confluent_kafka il Consumer
load_data i Loader

pymongo ir MongoClient

You, 2 months
class Processor()
def __init_ (self)

def _load_env(self)

def main_loop(self) —> None:

_check_cache(self, area, area_type) —> bool:

_get_last_updated(self):

_get_stats(self, area: str, area_type: str) —> bool:

_cache_query(self, stats: Dict, query_id: str, area: str, area_type: str, exe_time: float, load_time: floa
_calc_query_id(self, area: str, area_type: str) —> str:

_get_area_data(self, area: str, area_type: str):

_get_aggregation(self, loader: Loader) —> Dict:

3.3 Web API

To allow for the retrieval of data and the ability to search it I will be using an
HTTP API. This will be developed using the Flask library for python which
is a lightweight webserver framework. Flask has a do-it-yourself methodology
where it comes with the essential features and you build everything else you
need. This allows it to be super compact and simple but can grow to be used
in large applications if done correctly. To do this you need to plan out what

82



API routes your going to have and have a well-thought-out file structure so
the application is modular and can be easily expanded in the future.

3.3.1 Planning

For my Flask application, I will be using a file structure which is quite com-
mon among flask applications and one that I have used before. It will look
like the diagram below.

flask_app
app

__init__.py

main
__init__.py
routes.py

posts
__init__.py
routes.py

questions
__init__.py
routes.py

config.py

This structure will allow me to use a flask feature called blueprints which
allows for greater modularity. They work by having their separate file which
contains all the routes for that section. This file can then be imported into the
_init__.py where it is added to the main flask instance and can be customised.
For example, you can set a URL prefix for all routes in a blueprint or set
authentication for all of those routes. In my case, I will only use one blueprint
as [ don’t have many routes and they all come under the same category.

3.3.2 Boilerplate Code

There is some code that all Flask projects will have like the configuration file
where all environment variables are stored and the __init__.py file where the
flask app is initiated and the blueprints are imported into. When passing
config to Flask it requires it in an object format where each environment
variable is an attribute. Below is this.

83




import os

class Config:
SECRET KEY = os.environ. get ( 'SECRETKEY ")
SQL_USER = os.environ.get (”DB.USER” )
SQLPASSWORD = os.environ . get ("DBPASSWORD” )
SQLHOST = os.environ.get ("DBHOST”)
KAFKA = os.environ.get ("KAFKA” )
MONGOHOST =os . environ . get ("MONGOHOST” )
MONGO.USER = os.environ. get (?"MONGO_USER” )
MONGOPASSWORD = os.environ . get ("MONGOPASSWORD” )

Now that I have a configuration file I can write the __init__.py file. This
will contain the flask instance and is where all of the database or Kafka
connections will be handled.

import psycopg?2

from config import Config

from confluent_kafka import Producer
from flask import Flask, current_app
from pymongo import MongoClient

def create_app(config_class=Config) —> Flask:
app = Flask(__name__) # Initializes flask app
app.config.from_object (config_class) # Imports
config to flask app

kafka_producer = Producer({” bootstrap.servers”: app
.config ["KAFKA” | })

# Connects to kafka

mongo_db = MongoClient ( f”mongodb://{app.config][’
MONGO.USER "] }: { app . config [ 'MONGOPASSWORD ’| } @{
app.config [ 'MONGOHOST ] }:27017 /7 authSource=
house_data”)

# Connects to mongoDB

sql_db = psycopg2.connect (f” postgresql://{app.

84




config [ "SQL_.USER "] }:{app. config [ "SQL.PASSWORD ’| }
@{app.config [ SQLHOST '] }:5432/ house_data”)
# Connects to PostgreSQL

with app.app_context () :
# Stores comnections in app context
current_app . kafka_producer = kafka_producer
current_app .mongo_.db = mongo_db.house_data
current_app.sql_db = sql_db

from app.api import bp as api_bp # Imports
blueprint

app.register_blueprint (api_bp, url_prefix="/api/vl”
)

# Adds blueprint to flask app

return app

Reading the code above you may be wondering what the app context
is. This allows the database connections to be accessed from anywhere in
the app even if they're in a completely different file. This means that each
blueprint doesn’t need its connections and they can all be managed centrally
here.

The last bit of boilerplate code is for the API blueprint __init__.py file
which simply initializes the bluprint and imports the routes from the routes.py
file like this

from flask import Blueprint

bp = Blueprint (”api”, __name__)
# Initializes blueprint

from app.api import routes
# Imports routes

85




3.3.3 Routes

Now that all the boilerplate code is done I can get started on the routes.
These are the HT'TP paths that the user will go to fetch the data. My app
will consist of 6 routes. The first one I will work on is the route to analyse
an area.

Analyse Area

To create an analysis job for the data processors it will need to send a message
in the Kafka topic. Once this message has been sent it will then need to return
a URL with the query id for the user to access the results. The route will
take two arguments the area and area type. These will be passed in the url as

the path e.g. /CH/AREA, /CHESTER/TOWN. These will then be pickled
into bytes to be sent via Kafka. The code for this is below.

@bp.route (”/analyse/<string:area_type>/<string:area>")
# Take area and area type as arguments from the path
def index(area_type, area):

data = dumps((area.upper(), area_type.upper()))

# Pickle the area and area type into bytes

The area and area type are set to upper case for validation. Now that the
job is ready to send it needs to access the app context to send it via Kafka.
This is done using a with statement. I also added the same logic from the
update checker where it will retry the message until it sends waiting for
validation. The code for this is below which is a continuation of the above.

with current_app.app_context(): # Access app
context
while True:
try:
print (” Sending - query”)
current_app . kafka_producer.produce (”
query_queue” | data) # Send each
sale as string to kafka
current_app . kafka_producer.poll (0) #
Wait for message to send
break
except BufferError:

86




current_app . kafka_producer. flush () #
Flush buffer if failed

Now that it has sent the job it needs to return a URL. This URL will
contain the query id so when someone goes to it they will be able to see if
the job is done and if it is they will get the results. It will be returned in
JSON format. Below is the code for this.

query_id = (area + area_type).replace(”-7, 7").
upper ()
return jsonify (
status="ok” ,
query_id=query_id ,
result=f"https://api.housestats.co.uk{url_for (’
api.fetch_results ’,query_id=query_id)}”

)

The url_for function allows me to automatically link to the function I
want even if I change the path for it. To test this I ran the data processor
and the web server at the same time. 1 know if the results for my query
appear in the database after my request it has worked.

= ©] ® 127.0.0.1:5000/api/v1/analyse/outcode/CH2

{ anton1 - Proxmox... Q My Homelab | By... https:/ffilestore.aq... & Physics & Maths T.. £ Seneca - Learn 2x...

{
"query_id": "CH20UTCODE",
"result": "https://api.housestats.co.uk/api/v1/fetch/CH20UTCODE",
"status": "ok"

}

» _id: "CH20UTCODE"
arag: "CH2"
Object

—. 2a_type: "OUTCODE"

last_updated: 2023-02-15T10:24:40.969+00:00
» timings: Object
» stats: Object

87



You can see in the two images above that it was able to successfully send
the job which then ran and stored the results in the database.

Now I need to write the route to check if the results are in the database
and then fetch them if they are. This will simply consist of a mongoDB
query to search the database. It will also need to get the date the data was
last updated so it knows that even if there is data in the cache it will be
overwritten once the job has been completed so don’t return it. The code for
this is the same as the data aggregator except it uses the app context.

def get_last_updated():
cur = current_app.sql_db.cursor ()
# Get SQL connection from app constext
cur . execute ("SELECT - * -FROM- settings -WHERE-name -=-’
last _updated ’;”)
# Get timestamp of latest update
last _updated = cur.fetchone ()
if last_updated = None:
return datetime.fromtimestamp (0)
else:
if last_updated[1] is not None:
return datetime.fromtimestamp (float (
last _updated [1]))
# Convert timestamp to datetime object
else:
return datetime.fromtimestamp (0)

Now that I have this function copied over and edited I can write the route.

@bp.route (”/fetch/<string:query_id>")
# Take query id as argument
def fetch_results(query._id):
with current_app.app_context(): # Connect to app
context
query = current_app.mongo_db.cache.find _one ({”
_id”: query_id .upper () })
# Search cache for query
if query is not None:
if query[”last_updated”] > get_last_updated

():

88




# Check if cache is outdated
return jsonify (
results=query ,
outdated=False ,
done=True

)
else:
# Return if query outdated
return jsonify (
outdated=True,
done=False
)
else: # Return if query outdated
return jsonify (
outdated=False ,
done=False

To test this I used the same area as before and went to that URL the re-
sults are below. To test the other scenarios I first changed the date manually
to make it out of date and tested then I deleted it from the database to test
it. The results are below.

= C @ http://127.0.0.1:5007/api/v1/fetch/CH20UTCODE

>< anton1 - Proxmox... Q My Homelab | By... https:/[filestore.aq... & Physics & Maths T... -):(— Seneca - Learn 2x...

{"result":{"_id":"CH20UTCODE", "area":"CH2","area_type":"OUTCODE", "last_updated":"Wed, 15 Feb 2023 10:24:4
GMT","Wed, 01 Feb 1995 00:00:00 GMT Wed, 01 Mar 1995 00:00:00 GM "sat, 01 Apr 1995 00:00:00 GMT", "Mo:
00:00:00 GMT","Tue, 01 Aug 1995 00:00:00 GMT","Fri, 01 Sep 1995 :00:00 GMT","Sun, 01 Oct 1995 00:00:00
Jan 1996 00:00:00 GMT","Thu, 01 Feb 1996 00:00:00 GMT","Fri, 01 Mar 1996 00:00:00 GMT","Mon, 01 Apr 1996
GMT","Mon, 01 Jul 1996 00:00:00 GMT","Thu, 01 Aug 1996 00:00:00 GMT","Sun, 01 Sep 1996 00:00:00 GMT","Tug
00:00:00 GMT","Wed, 01 Jan 1997 00:00:00 GMT","Sat, 01 Feb 1997 00:00:00 GMT","Sat, 01 Mar 1997 00:00:00
Jun 1997 00:00:00 GMT","Tue, 01 Jul 1997 00:00:00 GMT","Fri, 01 Aug 1997 00:00:00 GMT","Mon, 01 Sep 1997
GMT", "Mon, 01 Dec 1997 00:00:00 GMT","Thu, 01 Jan 1998 00:00:00 GMT","Sun, 01 Feb 1998 00:00:00 GMT","Su
00:00:00 GMT","Mon, 01 Jun 1998 00:00:00 GMT","Wed, 01 Jul 1998 00:00:00 GMT","Sat, 01 Aug 1998 00:00:00
Nov 1998 00:00:00 GMT","Tue, 01 Dec 1998 00:00:00 GMT","Fri, 01 Jan 1999 00:00:00 GMT","Mon, 01 Feb 1999
GMT","sat, 01 May 1999 00:00:00 GMT","Tue, 01 Jun 1999 00:00:00 GMT","Thu, 01 Jul 1999 00:00:00 GMT","Su
00:00:00 GMT","Mon, 01 Nov 1999 00:00:00 GMT","Wed, 01 Dec 1999 00:00:00 GMT","Sat, 01 Jan 2000 00:00:00
Apr 2000 00:00:00 GMT","Mon, 01 May 2000 00:00:00 GMT","Thu, 01 Jun 2000 00:00:00 GMT","Sat, 01 Jul 2000
GMT","Sun, 01 Oct 2000 00:00:00 GMT","Wed, 01 Nov 2000 00:00:00 GMT","Fri, 01 Dec 2000 00:00:00 GMT", "Mo
00:00:00 GMT","Sun, 01 Apr 2001 00:00:00 GMT","Tue, 01 00:00:00 GMT","Fri, 01 Jun 2001 00:00:00
Sep 2001 00:00:00 GMT","Mon, 01 Oct 2001 00:00:00 GMT" Nov 2001 00:00:00 GMT","Sat, 01 Dec 2001
GMT","Fri, 01 Mar 2002 00:00:00 GMT" GMT", "Wed, 01 May 2002 00:00:00 GMT",
A a0 M 5 0 Al -

89




& C @© 127.0.0.1:5007/api/v1/fetch/CH20UTCODE

anton1 - Proxmox... Q My Homelab | By... https:/[filestore.aq.

{

"done": false,
"outdated": true

& C  ©® 127.0.0.1:5007/api/vi/fetch/CH20UTCODE

anton1 - Proxmox... Q My Homelab | By... https://filestore.aq...

{

"done": false,
"outdated": false

As you can see from the results it performed as expected and passed all
the tests.

3.3.4 Searching For Areas

This is quite a key feature for useability as it gives the user suggestions for
areas they are searching for as they type which will making searching a lot
easier as they don’t have to keep attempting to type somewhere hoping it
is correct. It will work by taking the query string in as an argument. It
will then create an SQL query to search the area table for any matching
ones. Once it gets the results these will then be returned to the user. The
SQL query will use a full-text search index that has been created which will
greatly improve the speed of searching. The query will look like this.

90



SELECT area, area_type

FROM areas WHERE substr(area, 1, 50)
LIKE ’{query}%”’

ORDER BY char_length (area)

LIMIT 10;

The ‘LIKE’ keyword is the key part of this and is what allows me to
search using parts of an areas name. I also don’t want to return more than
10 results as that would take up a lot of room on the screen and it would
take significantly longer to load ruining the user experience. Implementing
the SQL query with python would look like this below.

@bp.route (" /search/<string:query>")
def search_area(query):
query = urllib .parse.unquote(query).upper ()
# Decode URL safe characters like %20 for spaces

sql_query = {77”SELECT area, area_type
FROM areas WHERE substr(area, 1, 50)
LIKE *{query}%’
ORDER BY char_length (area)
LIMIT 10;77”
# Generate query with the query string

with current_app.app_context():
# Create app context
cur = current_app.sql_db.cursor ()
cur.execute (sql_query)
# Erecute SQL query
results: List[Tuple[str,str]|] = cur.fetchall ()
# Store results

Now that the results have been fetched they need to be returned to the
user. This will be done in JSON format like below.

if len(results) > 0:
# Check if there are any results
return jsonify (
results=return_list ,

91




found=True
) # Return search results
else:
return jsonify (
results=None,
found=False
) # Return if no results

You can see in the image below after running it can successfully return
suggestions for the search query ‘CH’.

92




< C @® 127.0.0.1:5007/api/v1/search/ch

anton1 - Proxmox... Q My Homelab | By... https://f

{

"found": true,
"results": |

n CH n '

“Area n

n CH7 n '
"Outcode"

n CHZ n '
"Outcode"

n CHS n '
"Outcode"

n CH3 n '
"Outcode"

One issue I noticed when searching for ‘Che’ for Chester is I got street
names first and then the city name. When people are searching it is unlikely
they’ll be searching for a street so I need to put the other area types above

93



< C ® 127.0.0.1:5007/apifv1/search/che

anton1 - Proxmox... Q My Homelab | By... https://filestorg

{

"found": true,
"results": [

n Cher" ;

"Street"

"Chenies",
"Street"

"Chervil",
"Street"

"Cheviot",
"Street"

"Chestal",
"Street"

To fix this I will sort the results by their area type in size decreasing
order. I will do this using the inbuilt sort function in Python and use a key
to get the order I want.

SORT.ORDER = {”area”: 1, "outcode”: 0, "sector”: 2, 7
postcode”: 3, "town”: 4, "county”: 5, "district”: 6,
"street”: 7}

# Key to set sort order

return_list .sort (key=lambda val: SORT ORDER[val[1].
lower ()], reverse=True)

94




‘# Sorts list wusing key

& cC @ 127.0.0.1

< anton1 - Proxmox... Q My Homelab | By... https:/ffilestore.aq... & Physics & MathsT.. B S

{"found" :true, "results":[["Cheadle", "Town"], [ "Cheddar", "Town" ], [ "Chester", "Town"],
["Chervil","Street"],["Chestal", "Street"],["Chelsea", "Street"]]}

You can see in the image above it put the towns before the street names.
This will make it easier for the user when searching. After finishing this I
realised I will also need to use the search function when looking up houses.
For this, though I only want to search postcodes so I will need to add a way
of filtering the search. To do this i will check to see if a filter argument has
been passed to the URL. If it has i will modify the SQL query to only search
for the area type specified in the filter argument.

query_filter = request.args.get(” filter”) # Check for
filter argument

if query_filter is not None:
if query_filter in [”postcode”, ”street”, "town”
district”, "county”, "outcode”, "area”, "sector”

# Validate 1t is a correct area type

R

sql_query = {77"SELECT area, area_type
FROM areas WHERE substr(area, 1,
50)
LIKE {query}%” AND area_type = {
query_filter}’
ORDER BY char_length (area)
LIMIT 10;77”
# Edit SQL query to only search for that type
else:
return abort (404) # Return 404 if not wvalid

type

95



else: # Act as normal if no filter passed
sql_query = {77”SELECT area, area_type
FROM areas WHERE substr(area, 1, 50)
LIKE {query}%’
ORDER BY char_length (area)
LIMIT 10;77”

I then tested it by only searching for postcodes and the result is below.
As you can see it was successful in only searching the postcodes and no other
area type.

& C (® 127.0.0.1:5007/api/v1/search/ch?filter=postcode

anton1 - Proxmox... Q My Homelab | By... https:/[ffilestore.aqg... @ P

{

"found": true,
"results": |

"CHS5 4wWp",
"Postcode"

"CH5 3JF",
"Postcode"

"CH2 3JB",
"Postcode"

"CH2 2AZ",
"Postcode"

3.3.5 House Lookup

My other feature as mentioned in the search section is the ability to look up
a specific house and see all of its previous sales. The user will first search
the postcode and then they will be given a list of all of the houses in this
postcode which they can then click on to view a specific house. Firstly I will

96




need to write a route to get all of the houses in a given postcode. This will
be quite simple as it uses one SQL query with a join to get all the houses
from a postcode. The SQL query looks like this.

SELECT h.type, h.paon, h.saon, h.postcode, p.street, p.
town, p.county
FROM postcodes AS p
INNER JOIN houses AS h ON p.postcode = h.postcode
AND p.postcode = %s;

Onces all of the houses have been fetched they will then be sorted by
house number and returned to the user. It will look like this.

@bp.route (”/find/<string:postcode>")
def search_houses(postcode):
sql_query = "77SELECT h.type, h.paon, h.saon, h.
postcode , p.street, p.town, p.county
FROM postcodes AS p
INNER JOIN houses AS h ON p.
postcode = h.postcode AND p.
postcode = %s;”"”
# Generate SQL query

with current_app.app_context(): # Connect to app
context

cur = current_app.sql_db.cursor ()

cur.execute (sql_query , (postcode.upper(),)) #
Ezecute SQL

results: List[Tuple[str,str str, str, str str|| =
cur. fetchall ()
# Store results

if results != []:
results = sorted(list (set(results)), key=lambda
x: x[1])
# Sort results by house number

return jsonify (
results=results ,

97




) # Return results as JSON
else:
return abort (404, ”Cannot-Find-Houses- for -
Postcode”)
# Return error if no houses are found

After testing it with a postcode it was able to successfully return all the
houses for a given postcode as seen below.

<« C ® 127.0.0.1:5007/apijv1/find/CH2%201DE

>< anton1 - Proxmox... Q My Homelab | By... https:/ffilestore.aq... g Physics & Maths T... —):(— Seneca

{
"results": [
[

"p*,

nyw,

e

"CH2 1DE",
"DELVINE DRIVE",
"CHESTER",
"CHESHIRE"

ngn,
"10",

" "I

"CH2 1DE",
"DELVINE DRIVE",
"CHESTER",
"CHESHIRE"

ngn
‘

EPLE

"CH2 1DE",
"DELVINE DRIVE",
"CHESTER",
"CHESHIRE"

ngn,
"y1g"

Now that they can search for houses in a postcode I need to create a route
where they can get all of the sales for a house. This will work by getting
the postcode, SAON, and PAON for a house. These will then be used to
search for all of the sales in a house. The SQL queries are shown below in
the Python Code.

98




@bp.route (”/find/<string: postcode>/<path:house>")
def get_house_saon (postcode, house):
try:
paon, saon = house.split(”/”) # FEztract paon
and saon from path
except ValueError:

paon = house # Only extract paon if no saon
found
saon = "7
sql_house_query = "77”SELECT h.houseid, h.type, h.

paon, h.saon, h.postcode, p.street, p.town
FROM postcodes AS p
INNER JOIN houses AS h ON p.
postcode = h.postcode AND p.
postcode = %s
WHERE h.paon = %s AND h.saon = %s;
# Generate query for getting all the info about the
houses

sql_sales_query = 77"SELECT +
FROM sales
WHERE houseid = %s
ORDER BY date DESC;”””
# Generate query for getting all of the sales

It will now search for a house with these values. Once it has found a
house it can then search for sales.

with current_app.app_context(): # Connect to app

context

cur = current_app.sql_db.cursor ()

cur.execute (sql_house_query , (postcode.upper(),
paon.upper () ,saon.upper() ,))

# FErxecutes sql query for house

house: List [Tuple] = cur.fetchone() # Stores
result

99



If it has found a house it will then search for all of the sales for that house.
Once it has all of these the data will be returned in JSON format so it first
must be formatted in a python dict

if house != []:
cur.execute (sql_sales_query , (house[0],)) #
gets all sales for the house

sales = cur.fetchall ()

# Load all sales

house_info = {
"paon”: house[2],
"saon”: house[3],
"postcode”: house[4],
7street”: house[5],
“town” : house[6],
"type”: house[l],
"sales”: sales

}

# Format data in dict

return jsonify (house_info)
# Return as json
else:
return abort (404, ”"No-House-Found”)
# Return error if no house found

I tested this with a valid house and an invalid house. It was able to
return all the sales for the house along with the correct address information
as shown below.

100




¢« G  ® 127.0.0.1:5007/api/v1/find/CH64%201RG/MEADOW%20VIEW/2

anton1 - Proxmox... Q My Homelab | By... https:/ffilestore.ag... @ Physics & Mat

{

"results": [
[
nDu ,
"MEADOW VIEW",
n 2 n ,
"CH64 1RG",
"MILL LANE",
"NESTON",
"9FF0D969-86EC-11ED-E053-6C04A8C06383",
"Wed, 15 May 2019 00:00:00 GMT",
850000,
false,
true,
IIAII

I then tested it with the invalid address and it successfully returned a 404
page not found.

< (6 ® 127.0.0.1:5007/api/v1/find/CH64%201RG/MEADOW%20VIEW/

anton1 - Proxmox... o My Homelab | By... https:/[filestore.aq... @& Physics & Maths T... —):(— Seneca - Learn 2x...

Not Found

The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.

3.3.6 Review

All of the routes for the API are fully functional and have been tested. Now
that this module has been completed I can tick off the success criteria for
creating an API to interface with. Unfortunately, the API is not a human-

101



interactable module so I won’t be able to get any feedback from my stake-
holder until I create the web interface for it.

3.3.7 Code Layout

urllib.parse
datetime datetime
pickle dumps
typing List, Tuple

app.api bp
flask current_app, jsonify, url_for, abort, request
.route("/analyse/<string:area_type>/<string:area>")

index(area_type, area):

.route("/fetch/<string:query_id>")
fetch_results(query_id):

.route("/search/<string: query>")
search_area(query):

.route("/find/<string:postcode>")
search_houses (postcode):

.route("/find/<string:postcode>/<string:paon>")
get_house(postcode, paon):

.route("/find/<string:postcode>/<string:paon>/<string:saon>")
get_house_saon(postcode, paon, saon):

get_last_updated():

3.4 Web Interface

The web interface is one of the most important modules as it is what inter-
faces with the user and it determines how they view the data. For the web
interface, I will be using svelte.js for the javascript framework and chart.js
to make the graphs. Together these should provide a smooth user experience
and allow me to create reactful content for the user.

102



3.4.1 Boilerplate Code

With javascript libraries, a lot of the code is auto-generated for you since it
will be the same for most projects. The default files will be shown below.

web—ui/

src/

lib/

routes /

+page.svelte

app. css

app.d. task

app . html
static/

favicon .png

robots. txt
.npmrc
package—lock . json
package.json
postcss.config.js
svelte.config.js
tailwind . config.js
tsconfig.json
vite.config.js

All of these files are created automatically and in my case don’t need to
be edited so I won’t show the contents of them here but it can be found in
the appendix. For my website, I used tailwind CSS to style my elements.
This allowed me to use classes instead of having to write actual css. Below
is an example showing how they are different.

# With tailwind
<a class="text—xl-text—red —600">Hello World</a>

# Without tailwind
<—CSS—>
ctext |

color: #ff0000 ;

font—size: 25rem;

103




<—C85—>

<a class="text”>Hello World</a>

You can see how much easier the top example is compared to the bottom.
It also makes the HI'ML easier to read as the styles are there next to the
code and I don’t have to go hunting in a style sheet to find it.

3.4.2 Search Bar

The key component of my website is the search bar as it is what all the
analysis and lookups originate from so it has to work well otherwise they
won’t be able to access anything else on the website. The search bar will
be accessible in two places the top right of the page to search for an area to
analyse and on the house lookup page to find a postcode. It will work by
detecting when the user types or removes a letter from the input box. When
this happens it will call the autofill function which will then request the web
API with the contents of the input bar as the query. Once the results are
returned they will be shown under the input box as clickable links.

async function autoComplete(search_value: string){
if (search_value) {
const response = await fetch( https://api.
housestats.co.uk/api/vl/search/’ +
search_value + ’7filter="+ filter);
// Sends http request to api with query string

and filter
const data = await response.json ();
// Saves json response
if (data.found = true){
suggestions = data.results;
// If there are results saves them to
variable
results = true;
} else {
results = false;
¥
} else {

104




results = false;

To make this function run when keys are typed I need to add an event
listener to the input field like below.

<div class="flex-flex—col”>
<input type="text”
name="area”
class="p—-3-rounded”
autocomplete=" off”
on:input={e => autoComplete(e.target.value)} //

Event listener to run when typing
>

</div>

Now that it sends a request and saves the results every time you type in
it I now need to output the results in a list below the search bar so that the
user can click on them. I will do this using a condition in svelte to only show
a block of HTML if the statement is true and then use a for loop to show
all the results in the list. Svelte is a reactful library so whenever a variable
changes value the interface is automatically updated e.g. when a new search
request is done the list is automatically updated.

{#if isFocused = true} // If the user is clicked on
the search bar

<div class="">

{#if results = true} // If there are results to
show

{#each suggestions as suggestion} // Loop
through them
<a href={"/analyse/’ + suggestion[0]}> //

Create a link to the page

{suggestion [0]}
<span class="">{suggestion[1]}</span>
</a>

{/each}

{:else}

<p class="ml-2">No Results</p>

105




{/if}

</div>

{/if}

I removed the styling so the code can be understood more easily. All of
this code is then put together to create a component. Components in svelte
are reusable pieces of code that are used to produce parts of an interface.
It’s the same concept as functions but for a GUI. This allows me to write
the code for it once and use it all over the website by simply importing it
into the page. Each component gets its file in the lib folder. Components
can also take arguments so for example in the search bar it takes a filter as
an argument so it can be used in the house lookup to search postcodes.

I then tested the search bar by typing in areas and seeing if it came up
with the correct suggestions which it did. You can see an example below.

106



Q cH

CH Area
CH3 oOutcode
CH4 outcode
CHS oOutcode
CH1 outcode
¢« CH/7 oOutcode
CH2 Outcode
CH6 oOutcode
CH8 outcode

3.4.3 Analysis Page

Now that I had the search bar working I could move to the analysis page. For
this page, I used a few components to display the data. I made a component
for each of the charts bar, line, and pie chart. I also made what I call a badge
which is a colourful box to house the ‘quick stats’ data.

Quick Stats Component

This was the simplest component as it was just a coloured box with the stat
name, value, and percentage change. It took the name, value, and change
as arguments which were then passed to the HTML to be rendered. It also

107



took an argument if the stat was a currency or not. This would round the
number to two decimal places and insert a pound sign if it was. The code
for this is below.

<script lang="ts”">
let formatter = Intl.NumberFormat(’en’,

{
notation: ’'compact’,
unitDisplay: ’long’,
style: ’currency’,
currency: 'GBP’

}); // Currency parser to round and add symbol

// Arguments being defined for the component
// with default values

export let value: GLfloat;

export let using_percentage: boolean = false;
export let percentage: GLfloat = 0;

export let title: string;

export let currency: boolean = true;
export let colour: string;
</script>

<div class="bg—{colour}—-600">
{#if currency} // Display as currency if chosen
<p>{formatter.format (value) }</p>
{:else} // Display as number if not
<p >{value.toLocaleString () }</p>
[/if}
{#if wusing_percentage }
// Showing the percentage and a sign for increase
or decrease
<p>{percentage < 0 7 ’down’ : ’up’} {Math.abs(
percentage ) }%</p>
{/if}
<p>{title }</p>
</div>

Once written I then tested these with some data I just came up with and

108




the results are below. I did one with currency and one without to test the
features along with different colours. They worked great so now i can move
onto the next component.

£297K ¥ 01%

Average House Price

28,933 V¥ 37.77%

Sales Volume

Line Graph Component

The line chart is a slightly more complex component but a lot of the code is
simply configuring and styling the graph for my preference. I will also need
to transform the data to work with chart.js. The data is stored in the format
shown below.

{

"house_types”: [<list of types>]
"prices” |

<list of prices >],

[

[<list of prices >],

<list of prices >],

[

<list of prices >

[

] )

"dates”: [<list of dates>]

Chart.js takes it in the format show below.

109




"label”: <house type>,
"data”: <list of prices >,

When it is creating the line chart it will need to match up the house
type with its corresponding list of data points. This will be done by looping
from 0 to however many property types and then getting the value from the
house_types and the prices list corresponding to that index. I will then use
a hashmap to get a human-readable version of the house type to display on
the graph. Each property type will also be assigned a colour.

let house_types: { [key: string]: string } = {
'D’: 7" Detached”
’S’: 7Semi—Detached” ,

"T’: 7"Terrace” ,
7F7: 2 Flat” ,
'O’ : ’Other’,

7 31177: 7 All?’

}; // Hashmap for human—readable wversion

let colours = |
Udc2626
"#9333ea ’
"#16a34a’,
H#db277T7

| # Different colours to use

export let labels: Array<string >;
export let title: string;

export let data: Array<Array<Biglnt>>;
export let dates: Array<string >;

let data_length = data.length;
let datasets = [];

for (let i = 0; i < data_length; i4++){
datasets.push({ // Add to dataset list

110




P

label: house_types[labels|[i]], // Get human
version of type

data: data[i], // Get numbers from price list

tension: 0.1,

borderColor: colours|[i], // Assign it a unique
colour

fill: false,

Once the data has been transformed into the correct format it can be
rendered into a graph. To do this it needs to have a target to render it on
with a unique id. The graph will also need to be configured to have the x-axis
display dates, be responsive and allow for panning and zooming in.

const chart_data = {
labels: dates.map((x) => {return new Date(x
) 1)
datasets: datasets
Yy // Adds dates to a list and converts a
string to DateTime object
const config = {
responsive: true,
type: ’line’,
data: chart_data ,
options: {
scales: {
x: |
type: ’“time’,
time: { // Sets smallest unit
for z—axis
round: ’‘month’,

minUnit: ’'month’
I
adapters: {

date: {

locale: enGB
} // Sets date format

111




¥
}s
plugins: {
zoom: {
pan: {
enabled: true
}, // Enables panning
zoom: {
wheel: {
enabled: true,
}, # enables zooming
pinch: {
enabled: true
’,

. Y
mode: ’'xy’,

}
}

title: {
display: true,
text: title

} # Sets the title for the graph

}
b
let line_chart: Chart;
onMount (()=> { // Runs code when page is loaded
let ctx = document.getElementByld (graph_id)
i // Gets target canvas to render on
if (ctx != null){
line_chart = new Chart(ctx, config); #
Renders graph on target canvas

})

There also needs to be some HTML to go with this and there needs to
be a reset button for zooming so the user can go back to the default view of
they get stuck.

<canvas id={graph_id}> // Canvas to render graph on

112




</canvas>
<button on:click={line_chart .resetZoom (’default ')} type
="button”>Reset Zoom</button>

Now that I have all the pieces working i can test it using some of the
data. Below you can see the results.

Monthly Average Price

[ Detatched [ Flat [__] Semi-Detatched [___] Terrace All

462,503.0

400,000
350,000
300,000
250,000
200,000

150,000

87,350.2

<5
O
~0
o)
%
0

O
O
{LQ

Bar Chart

This will be a very quick section as the bar chart is the exact same as the
line graph except in the config section instead of line you write bar.

const config = {
responsive: true,
type: ’bar’,
data: chart_data ,

-}

As you can see below it works just as well as the line graph.

113




aIve vwiuns

I Detaiched M Flat [ Semi-Detatched [ Terrace

1,800
1,600
1,400
1,200
1,000

800

[=]

6

[=]
o

4

[=]
o

2

[=]
o

0

H O A DO D
D O OO
GGG

Pie Chart

The pie chart was quite easy as the data format that chart.js coincides with
the format I'm storing in the database. I also used the bit of code to convert
the property types to human-readable ones from the line and bar chart. The
chart data code for the pie chart is shown below.

let house_types: { [key: string]: string } = {
'D’: "Detatched”
'S’: 7”Semi—Detatched” ,

"T’: "Terrace”
7F7: 77F1at77 ,
'O’ : "Other’

}; // Hashmap of human—readble types

// Defining arguments for component
export let labels: Array<string >;
export let title: string;

export let data: Array<Biglnteger >;

const chart_data = {
labels: labels.map((x) => {return house_types|[x]}),

114




// Convert types to human readable
datasets: [{
label: title ,
data: data, // Set data
backgroundColor: |
'#dc2626 7,
"#9333ea ’,
"#16a34a’,
Hdb277T
|, // Set colours for each type
hoverOffset: 4

}]7

}s

Once the data has been set in the dataet it is then configured and rendered
the same as the bar and line chart except there are less variables as the pie
charts are a lot simpler and there is less to control.

const config = {
type: ’'pie’,
data: chart_data ,
options: {
plugins: {
title: {
display: true,
text: title // Sets title

}

}s

onMount (()=> { // Renders when page loads
let ctx = document.getElementByld(’piechart’);
new Chart(ctx, config);

})

This is then rendered onto a canvas tag the same as the other graphs.
Below is the pie chart.

115




Property Types

B Scmi-Detatiched I Terrace M Flat
I Detaiched

Review

Now that I had all of the components made I sent the test images shown
above of each one to my stakeholder. They each gave me feedback for them
and it was mostly positive. The responses are summarised below as they had

116



mostly similar things to say.

Both Steven and Scott said they liked the colours as they contrasted well
and made the graphs clear and easy to see. Neither of them had anything to
say about the quick stats badges. Both of them did mention how on the line
graph the line was a bit thick so they found it hard to see exactly where it
was on the graph. Fortunately, this is just a setting I can tweak in the config
section. Scott also said that the inconsistencies in the keys on the graphs
annoyed him as flats would be green on the pie chart but purple on the line
graph. He did say this was him being pedantic though fortunately this is
also an easy fix.

The line width issues will be fixed as shown below.

const config = {
responsive: true,
type: ’line
data: chart_data ,
options: {
borderWidth: 0.5, // Changes line

thickness

}

The mismatching colours in the keys were simply fixed by changing the
order of colours in the list for the pie chart.

3.4.4 Page Layout

Now that all the components have been created and I have gotten feedback
from my stakeholders I can combine the components into the analysis page
but before this happens I need to write the logic that fetches the data using
the APIL. In svelte you can write logic that runs whilst the page is loading in
a ‘+page.ts’ file. This runs whilst loading so is useful for fetching any data
that might be needed when the page gets rendered.

Loading Data

To get the data from the API i have to first make a request to the analyse
endpoint to run a job on the data aggregators. Once that has been sent it

117



then needs to repeatedly request from the url returned until it says there are

results. When these results are recieved they are then passed on to the page
to be rendered.

import { error } from ’@sveltejs/kit’;

export async function load({ fetch, params }) {

const sleep = (ms: number) => new Promise ((r)
=> setTimeout(r, ms));

// Sleep function to wait before requesting again

let area: string = params.area; // area string

let area_type: string = params.area_type; //
area type string

let stats;

let counter = 0 // request counter if it times
out

const response = await fetch( https://api.
housestats.co.uk/api/vl/analyse/’ +
area_type + '/’ + area);
// Send requests to analyse the endpoint to start
job
const data = await response.json ();
// Stores json response

if (data.status == "ok”) {
while (true) {
const res_resp = await fetch(data.
result);

// Checks returned endpoint to see if the
job 1is done

stats = await res_resp.json();

if (stats.done =— true) {

break // If it returns
the data break out

118



of the loop
} else if (counter > 60x4) {
throw error (500, ’
Connection - Timed - Out
)
// If request take longer than /4
minutes raise an error

}

counter-4+4;

await sleep (250) // sleeps for
250ms between requests

}
} else {

throw error (500, ’An-Error-Has-Occured’

) ;
}

return stats

To test this I got it to ‘console.log’ the raw data so I know if it was loaded.

—-) . OUUd T UUZ . "
v{_id: 'OVERVIEW', average_price: {..}, bottom_five: Array(5), last_updated: 'Wed, 15 Fe
b 2023 10:08:11 GMT', monthly_qty: {w}, w}

» average_price: {dates: Array(335), prices: Array(5), type: Array(5)}
» bottom_five: (5) [{.}, {.}, {.}, {.}, {.}]
last_updated: "Wed, 15 Feb 2023 10:08:11 GMT"
» monthly_qty: {dates: Array(335), qty: Array(5), type: Array(5)}
’mon'bércenﬁge_chéﬁge s: Array(335), type: Array(5), volume: Array(5)}
» percencage_cnange: io: {.}, F: {.}, S: {.}, T: {..}, all: {.}}
» quick_stats: {average_change: -0.1, average_price: 296808.37624464807, current_month:
» timings: {aggregate: 48.31328201293945, aggregate_average: 15.677556991577148, aggreg
» top_five: (5) [{.}, {.}, {.}, {.}, {.}]
» type_proportions: {count: Array(4), type: Array{4)}
_id: "OVERVIEW"
» [[Prototype]]l: Object

As you can see it was able to successfully load the data so now I can move
on to laying out the components on the page.

119




Page Layout

Before I can write the HTML for the page I need to import the components
and set some variable. This will make it easier to pass the data to the
components as it is a heavily nested JSON object. The components will be
imported first and then there will be some logic to check if the data has been
loaded correctly and then it will be broken up into variables to make it easier.

// Import all of the components
import Badge from ’$lib/components/Badge.svelte ’;

I

import QuickStat from ’$lib/components/QuickStat.svelte

import PieChart from ’$lib/components/PieChart.svelte’;

Y

import LineGraph from ’$lib/components/LineGraph.svelte

I

let quick_stats, stats, results;
let last_updated: Date;

let current_month: Date;

// Init wvariables

export let data;

if (data.done = true) { // Check if data is loaded
// Split data up into wvariable
quick_stats = data.results.data.quick_stats;
stats = data.results.data;
results = data.results;

// Get import dates
last _updated = new Date(results.last_updated);
current_month = new Date(quick_stats.current_month)

}

let title = ”"Analyse”; // Set page title

// Function to help with formatting some of the data
function toTitleCase(str: string) {

120




return str.toLowerCase().split(’-7).map(function (

word) {
return (word.charAt(0).toUpperCase() + word.

slice (1));
})-join(7-7);

First, I want the quick stats to be displayed at the top front and centre
so they are the first to be seen and easy to read. Alongside them will be
the title of the area and what is the most recent month. The title will be
accompanied by some statistics on the data processing like how long each
step took and when it was last updated. The HTML for this is below.

<div class="m-2">
<div class="items—center-align—middle- flex - flex —
initial - flex —wrap”>
<p class="inline —block-text —2x]-m—2-align—
middle”>
{toTitleCase(results.area)} ({toTitleCase(
results.area_type)})
</p>
<Badge
text="Last - Updated-{last_updated .
toLocaleDateString () }”
colour="green”
classes="inline —block-align —middle”
/>

<Badge
text="Execution - Time- {Number ((results.
exec_time) .toFixed (3))}s”
colour="green”
classes="inline —block-align —middle”
/>
<Badge
text="Data-Fetch-Time- {Number ((results.
load_time) .toFixed (3))}s”
colour="green”
classes="inline —block-align—middle”

/>

121




<Badge

text="Current -Month-{current_month.
toLocaleDateString () }”

colour="green”
classes="inline —block-align —middle”

/>

</div>
</div>

You can see all of the numerical values are rounded to 3 decimal places
and all the dates are converted to the user’s timezone and date format. The
text is also all in title case. You can see how it looks below.

CH (Area) December 2022 tastupdated15/03/2023  Execution Time 11065 Data Fetch Time 65.957s  Current Month 01/12/2022

Now I can do the quick stats which will be laid out horizontally 4 across
with individual colours and statistics.

<QuickStat
value={quick_stats.average_price}
using _percentage={true}
percentage={quick_stats.average _change}
title=" Average-House- Price”
colour="red”

/>

<QuickStat
value={quick_stats.current_sales_volume}
currency={false}
using_percentage={true}
percentage={quick_stats.sales_volume_change

}

title=" Sales - Volume”

colour="purple”

/>

<QuickStat
value={quick_stats.current_price_volume}
using _percentage={true}

122




percentage={quick_stats.price_volume_change
}
title="Sales-Price - Volume”
colour="green”
/>
<QuickStat
value={quick_stats.expensive_sale}
using _percentage={false}
title="Most - Expensive - House”
colour="pink”

£214K ¥ 382%

Average Hol

The last part for this page is the graphs. There will be four graphs average
price, price volume, sale quantity, and property type proportions. Together

these will provide the user with a comprehensive view of the property market
for that area.

<div class="xl:row—span—2">
<PieChart
title="Property-Types”
labels={stats.type_proportions.type}
data={stats.type_proportions.count}/>
</div>
<div class="md: col—span—2-row—span—2">
<LineGraph
title="Monthly- Average-Price”
labels={stats.average_price.type}
data={stats.average_price.prices}
dates={stats.average_price.dates}/>
</div>
<div class="-md: col—span—2-row—span—2">
<BarGraph
title="Sales -Volume”

123




labels={stats . monthly_sales_volume.type

}

data={stats.monthly_sales_volume .volume

}

dates={stats.monthly_sales_volume . dates

/>
</div>
<div class="md: col —span—2-row—span—2">
<BarGraph
title="Price-Volume”
labels={stats.monthly _price_volume.type

}

data={stats.monthly_price_volume.volume

}

dates={stats.monthly_price_volume . dates

/>

uuuuuuu

nnnnnnn

nnnnnn

uuuuuuu

aaaaaaa

¥

o u||IMI|M||m,| thu uw

6
4
2
o

[ ‘1“

‘M “’MW‘ i ﬁ*i ‘WW \N\H H\MMV d\qm‘ ‘I]

i | ‘
‘ \
) ‘
H H‘ \ ‘1 m il
iy 1111 L bk
LIS AT

The analysis page is now finished along with all of the components for it.
I sent copies of it over to both of my stakeholders and they both said they
were very happy with it and were excited to see the finished product.

il \‘ |
i

124




House Lookup

For this section, I need to make a page that uses the search bar to lookup
postcodes and then takes the user on to another page where they can see all
the houses for that postcode in a table. Each house in that table will then
have a link where they can go see more information about that house and
the sales for it.

Search Page

The search page will be a fairly simple page containing only a search bar in
the centre and the suggestions list below. It will use the search bar component
that was previously made and it will make use of the filter argument to only
search postcodes. The code for this will be cery short so wont require much
explanation.

<script lang=’ts >
import SearchBar from ’lib/components/SearchBar

.svelte ’;
</script>

<svelte :head>
<title>House Stats | Valuation</title>
</svelte :head>

<div class="flex-justify —center-items—center -max—w—
screen’>
<div class="-mt—28">
<p class="text -3x1”">Enter Postcode
Below</p>
<SearchBar filter="postcode” />
</div>
</div>

Below you can see how this page looks. There isn’t much to this page so
I didn’t ask my stakeholder for any feedback.

125




Enter Postcode Below

Search Postcode

House Table Page

Fortunately, this page has a bit more to it so there will be more to talk about.
Like the analyse page it will need to load the data first. This is again done

through the ‘+page.ts’ file. Loading this data is a lot more simple as it only
requires ones API call.

import { error } from ’@sveltejs/kit’;

export const load = (async ({ params }) = {
let postcode: string = params.postcode;
const response = await fetch( https://api.
housestats.co.uk/api/vl/find/’ 4+ postcode.
toUpperCase () ) ;
// Fetch houses from postcode using API

const data = await response.json ();
// Store results as JSON
if (response.status = 200) { // Check for

success
return {
data: data.results ,
postcode: postcode
} // Return results to be rendered on page
} else {

throw error (404, ’No-Postcode-Found’);

126



// Raise error if no houses found

1)

Now that the data has been loaded it can be rendered as HTML. It will
be displayed in a table with 6 rows. These will be SAON & PAON, Street,
Town, County, Postcode, and Action. The action column will house the
link to see more information on the property. To show each house from the

postcode I will use a for loop to iterate through the list and insert the value
into the HTML as shown below.

<tbody>

{#each data.data as house} // Loop through houses
<tr class="bg—white-border—b-dark:bg—gray —900-

dark : border—gray —700">

<th scope="row” class="px—6-py—4-font—

medium - text —gray —900- whitespace—mowrap -

dark: text—white”>
{house[2]}{house[1] != "7 && house[2]

I= "> 72 27 ¢+ 7} {house[l]} //
Display house PAON and SAON

</th>

<td class="px—6-py—4">
{house [4]}

</td>

<td class="px—6-py—4">
{house [5]}

</td>

<td class="px—6-py—4">
{house [6]}

</td>

<td class="px—6-py—4">
{house [3]}

</td>

<td class="px—6-py—4">
<a href="/valuation/{data.postcode.
toUpperCase () }/{house[1]}/{house[2]}
">View</a>
// Create link to see more info on the

127




house
</td>
</tr>

{/each}

</tbody>

This code snippet will be embedded in the table

<div class="md:mx—24-my—8">
<a href="/valuation”>&lt; Back</a>
<div >
<table >
<caption >
{data.postcode.toUpperCase ()}
<p class="">All of the houses with the
postcode {data.postcode.toUpperCase

()}.</p>
</caption>
<thead>
<tr>
<th scope="col” class="px—6-py—3"> SAON,
PAON </th>
<th scope="col” class="px—6-py—3"> Street <
/th>
<th scope="col” class="px—6-py—3"> Town </
th>
<th scope="col” class="px—6-py—3"> County <
/th>
<th scope="col” class="px-—6-py—3"> Postcode
</th>
<th scope="col” class="px—6-py—3"> Action <
/th>
</tr>
</thead>
<<<Insert Snippet HERE>>>
</table>
</div>
</div>

128




The styling has been removed to make the HTML more readable.

< Back

CHeé4 9uP

All of the houses with the postcode CH64 9UP.
SAON, PAON STREET TOWN COUNTY POSTCODE ACTION

10 ELDON TERRACE NESTON CHESHIRE CH64 9UP View
n ELDON TERRACE NESTON CHESHIRE CH64 9UP View
12 ELDON TERRACE NESTON CHESHIRE CH64 9UP View
15 ELDON TERRACE NESTON CHESHIRE CH64 9UP View
16 ELDON TERRACE NESTON CHESHIRE CH64 9UP View

17 ELDON TERRACE NESTON CHESHIRE CH64 9UP View

The next part was displaying the sales data on a house. This would again
require me to load the data from the API using the ‘+page.ts’ file. This only
required one API call so will look almost identical to the house list call except
the URL will be slightly different.

import { error } from ’@sveltejs/kit’;

export const load = (async ({ params }) = {
let postcode: string = params.postcode;
let paon: string = params.paon;
//parse information from path

const response = await fetch( https://api.
housestats.co.uk/api/vl/find/’ + postcode.
toUpperCase() + '/’ + paon.toUpperCase());
// Fetch house sales
const data = await response.json ();
// Store house sales as json

if (response.status = 200) { // Check for
success
return { // Return dalta upon success
sales: data,
postcode: postcode ,

129




paon: paon

}
} else {

throw error (404, ’No-Postcode-Found’);
// Raise error if no house or sales found

}
1)

Once the information had loaded this was once again passed over to the
HTML to be rendered. Since I will be displaying price information I will need
to use the currency format as I did for the quick stats component. Again for
simplicity, I will split the JSON data up into individual variables to be used
making the code easier to read and work with. Below is the code for this.

function toTitleCase(str: string) {

return str.toLowerCase().split(’-’).map(function (
word) {
return (word.charAt(0).toUpperCase() + word.
slice(1));

})join(7-7);

} // Function to format text data as title
export let data: PageData;

// Divide json up into individual variables

let sales = data.sales;
let paon = data.paon;
let saon = data.saon;

let postcode = data.postcode;

// Initialize number formatter
let formatter = Intl.NumberFormat(’en’, {
notation: ’'compact’,
unitDisplay: ’long’,
style: ’currency’,
currency: 'GBP’

1)

For the first part of the page, I want to have the title be the house number

130




and street and then below that show all the address information about the
house. The address information will be housed within its white box.

<p class="text —2xl-my—4-mx—2">{toTitleCase (saon) + (
saon = 777 77 ") H{toTitleCase(paon)}, {
toTitleCase(data.street ) }</p>

// Convert house number and street to title case for

the title

<div class="row—span—2-bg—white-p—4-rounded”>
<p class="text—1g”>House Infomation</p>
<div class="border —2-p—2">
<p class="font—bold”>Address</p>
<p>
{saon} {paon}, <br>
{data.street }, <br>
{data.town}, <br>
{postcode}
</p> // Show the address for the house
</div>
</div>

11, Eldon Terrace

House Infomation

Address

n,

ELDON TERRACE,
NESTON,

CHe4 9uP

Now I'm going to create a table to show all of the sales a house has
had since 1995. The table will have 5 columns price, date, sales, type,
ppd_category, and new build. The code for the table will be the same as
the house list minus the column names and row data.

131




{#each sales as sale}
<tr class="bg—white-border—b-dark:bg—gray —800-dark:
border—gray —700">

<th scope="row” class="">
{formatter.format (sale[1])}

</th>

<td class="px—6-py—4">
{(new Date(sale[2])).toLocaleDateString ()}

</td>
<th class="px—6-py—4">
{sale [4] == true 7 ”Freehold” : ”Leasehold”
</th>
<th class="px—6-py—4">
{sale [5] = "A” ? ”Standard-Price-Paid” : 7
Additional - Price-Paid” }
</th>
<th class="px—6-py—4">
{sale [3] = true 7 "True” : "False”}
</th>
</tr>

{/each}

This is what the row part looks like. I won’t show the rest of the table as
it is identical to the other part except the column names. Now with all the
parts done, you can get a final view of what the page will look like.

132




11, Eldon Terrace

House Infomation Previous Sales

Address PRICE DATE SALES TYPE PPD CATEGORY NEW BUILD

n,
ELDON TERRACE, £51K 11/06/2001 Freehold Standard Price Paid False

NESTON,
CH64 9UP

I sent all of the pictures of the pages to my stakeholders for some feedback.
They both got back to me and were very impressed with it and said that they
couldn’t think of any meaningful changes that I could make to it.

Navigation Bar

The navigation bar is the glue for my website as it is where the user navigates
between pages and where they search for new places to analyse. The navbar
is a component that will be placed at the top of every single page so it is
always accesible. The navbar will also be dynamic so whichever page the
user is currently on will be blue text. This is done by using the page data
store in svelte to see what the current path is.

// Import components and libraries
import { page } from ’$app/stores’;
import SearchBar from ’§lib/components/SearchBar.svelte

’ .
Y

$: current_page = $page.url.pathname; // Defines a
variable to hold the current page

When a variable is defined using a dollar sign in svelte it means that
when it changes it will automatically update the UI. This is required for the
navbar as I want the text to change as soon as they change the page. The
code to make the text blue looks like this.

<a

133




href="/valuation”

class="block -py—2-pl—3-pr—4-rounded - {current_page -
/valuation” -7--’text—blue’-:-’text—gray —700"}”

>House Lookup</a>

So when the current page variable is the same as the page path the text
is blue. This code is used on all the links in the navbar. Aswell as that the
searchbar is embedded at the end of the navbar to allow users to search for
an area no matter where they are on the website.

<nav >
<div >
<a href="/" class="flex -items—center”>
<img src="/logo.svg” alt="House-Stats-Logo”
/>
<span>House Stats</span>
</a>
</div>

<div class="">
<ul class="">

<li>
<a
href="/"
class="block -py—2-pl—3-pr—4-rounded
-{current_page-——="/"-7--"text—
blue ’-:-"text—gray —700’}”
>Dashboard</a>
</1li>
<li>
<a
href="/counties”
class="block -py—2-pl—3-pr—4-rounded - {
current_page -——-"/counties” -7--"’
text—blue ’-: - "text—gray —700"}”
>Overview Counties</a>
</li>
<li>

<a
href="/valuation”

134




class="block -py—2-pl—3-pr—4-rounded - {
current_page ——" /valuation”-7- -~

text—blue’-:-"text—gray —700"}”
>House Lookup</a>
</1li>
<li>
<a

href="/reports”
class="block -py—2-pl—3-pr—4-rounded - {

current_page-——=-"/reports”-7--"text
—blue ’-: - "text—gray —700"}”
>Report Generator</a>
</1i>
</ul>
</div>
<SearchBar></SearchBar>
</nav>

Below you can see the end result of this giving the user an easy way to
navigate around the website.

ﬁ( House Stats Dashboard Overview Counties House Lookup Report Generator Q search Areas...

Review

Now that I have all of the pages completed I sent a link to my stakeholders
where they could go and play around with pages and see if there were any
issues or areas that needed improving.

Scott said that he liked the website and that it had a nice look and feel to
it. He did say that it would be nice to have a short bit of text that explains
all of the statistics and what they mean for people who may not be as well-
versed. If I had more time I could’ve added some tooltips next to each stat
explaining them.

Steven said he was very impressed with the site and how professional it
looked. He had some slight issues when accessing it on his phone as the screen
wasn’t big enough to view the graphs as they were quire squash. Had I had
more time I would’ve invested more time into making it more mobile-friendly

135




but my mine demographic was a professional user who would be accessing it
on desktops or iPads with larger screens

136



Chapter 4

Evaluation & Stakeholder
Testing

4.1 Stakeholder Testing

4.1.1 Questions

1. What device are you using and how does the website look on your
device?

2. Did the page load promptly?

@

Do you understand what each statistic means on the home dashboard?

=

Were you easily able to search for statistics on a specific area?
5. How did you feel about the time taken to load the statistics?
6. How easy was it to view the history of a specific property?

7. Was the information laid out intuitively?

4.1.2 Responses
Scott

1. T opened the website on my laptop and the data was laid out fine all of
the information was easy to read and the colour palette made it easy
on the eyes.

137



2. The home page loaded as quickly as any other website so I wasn’t sat
there waiting

3. 1 was able to understand almost all of the statistics on the home page
except what the "Top Areas’ meant but after googling it I realised it was
referring to postcode area and I was initially confused by the suffixes
used for the numbers on the quick stats so maybe they could be the
full word like 'Million” instead of "M’

4. The search was super easy and the autocomplete made it even easier
as [ couldn’t go wrong with it and the suggestion loaded very quickly.
One suggestion I would add tho is the ability to just press enter instead
of having to click on the desired area

5. On my first search it took a fair few seconds but not so long to put
me off. When I searched for another area though it loaded almost
instantaneously

6. Searching for a property was super easy as I just needed to type in
the postcode which was autocompleted for me and then click the house
number.

7. The information was laid out fine and it was easy to understand each
section of it. A nice addition would be to suggest similar properties in
the area

Steven

1. T opened the website on my iPad. The website looked great on my iPad
and I could read everything though it would be nice if the graphs were
a bit bigger.

2. It took a few seconds to load but that might have been down to me
being on-site and using cellular data.

3. I could understand all the statistics presented to me though my pro-
fessional background probably played a part in that and the colours
complemented each other nicely making it easy to read

138



4. The search function was very easy to use and the autocomplete made
it even simpler to use. It might’ve been just me but I found I had to
tap the area a few times before the website registered it

5. I was very impressed by how quickly the statistics loaded as I chose
quite a large area to view

6. Initially I had a bit of trouble searching for a property as it wouldn’t
show up in the results after typing in the postcode. I tried another
property and that worked fine. I would recommend looking into the
first property as I'm 100% sure it exists

7. 1 liked the layout of the information and the Energy Proficiency Cer-
tificate was handy as it gave me an idea of the size of the property and
the age

4.1.3 Review

Overall the stakeholders seemed very happy with the solution and had mostly
positive things to say about it. They were happy with the loading time
which was my biggest challenge and how it was laid out. One of the issues
was not an issue with my programme but instead with the data provided.
For example, after speaking with Steven the property he was searching for
had not been sold after 1995 so it was not listed in the government dataset.
Some of the other issues they put forward were to do with the usability of
the programme for example Scott not understanding the suffixes and not
understanding what some of the statistics mean. This could be solved by
having a little question mark logo by each statistic which when hovered over
could show a brief explanation of what it means and what it could indicate.
The issues Steven raised about having to tap multiple times when trying
to select an area, unfortunately, could not be replicated so I am unable to
fix that issue though the suggestion to be able to press enter to select an
area would be able to remediate this issue as they wouldn’t have to tap the
specific area. Another suggestion to show similar properties in an area when
looking at another property would be tough to implement as I would have to
find a dataset containing the attributes of each house so I can decide what
is similar and what is not.

139



4.2 Sucess Criteria

Criteria

Met

Evidence

Insert the PPD data
into an SQL database
in 3NF

Yes

Screenshot below

Query data from the
database using Python

Yes

Screenshot below

Performing statistical
operations on data
using Python

Yes

Screenshot below

Selecting data from
specific areas and
aggregating it

Yes

Screenshot below

Creating an API to
interface with and get
data

Yes

Screenshot below

Creating a user
interface to show data
from the API via

graphs and figures

Yes

Link to website below

Having searched for
historical data taking
ip00ms

Screenshot below with
video

Generating statistics
for an area and
displaying taking
i2000ms

Screenshot below with
video

Upload new data to
the website for
analysing and
searching

n/a

Setting time frames
for analyses of the
data

140




4.2.1 Evidence
Data Stored in 3NF
Sales Table

18 tui 2 price * date 2 new * freehold = ppd_cat =+ houseid 4
1 2600B105-2E30-49D1-B7EE-4652ECIC1ED2 78000 1995-03-03 false - true A 21TF2 9NW
2 A42E2F04-2538-4A25-94C5-49E29C6C8FA8 18500 1995-01-31 false false A VILLA PARADISOFLAT 18TQ1 1RY
3  10E5F080-7AF3-4982-AAEF-42C55DC955FC 30000 1995-11-28 false -« true A 66WS10 9LD
4  E5B50DCB-BC7A-4E54-B167-49E2A6B4148B 59000 1995-03-31 false -+ true A 28BH12 2AE
5 F745AFC7-E616-49D0-8ABC-3F320DF886C7 40000 1995-06-09 false -+ true A 8BD6 3AR
6 1BA349E3-2579-40D6-999E-49E2A25D2284 73450 1995-10-89 - true * true A 6L26 7XJ
7 D3OEEA6F-CFB6-489A-9D03-4652DB154C43 40000 1995-10-27 false -+ true A 17NR17 1EY
8 81E50116-D675-4B7F-9F8D-49E2B5D43271 31000 1995-12-84 -« true * true A NONSUCH COTTAGEIP13 @DR
9 5BBAE523-83F4-4829-BDE9-3BAOE3D921FD 39950 1995-10-27 false -+ true A 53NG15 7LY
10 B97455B9-75CB-40BB-A615-42C53683E143 95000 1995-09-22 false -+ true A FOX COVER COTTAGEWS14 GBE
11 CD39CFC2-E6D1-47D9-A588-3F31DB3D3CA2 52000 1995-08-10 false false A DUKES COURT, 17FLAT 4BH1 1QY

Houses Table

Y- WHERE =~ ORDER BY postcode DESC
+% houseid B paon B saon + postcode vi type :
1 JOSEPH ROWNTREE THEATREY091 1RT JOSEPH ROWNTREE THEATRE Y091 1RT 0
2 [ T L T GNP Ll NORWICH UNION INSURANC.. Y090 1R 0
3 2Y090 1UU 2 Y090 1UU 0
4 1Y08 9YE 1 Y08 9YE D
5 2Y08 9YE 2 Y08 9YE D
6 3Y08 9YE 3 Y08 9YE D
7 1Y08 9YD 1 Y08 9YD D
8 2Y08 9YD 2 Y08 9YD D
9 4Y08 9YD 4 Y08 9YD D
10 3Y08 9YD 3 Y08 9YD D
11 12Y08 9YB 12 Y08 9YB D
Postcodes Table
Y- WHERE =~ ORDER BY postcode DESC
sfpost... v 1 street $ town s district ¢ county ¢ outcode * area ¢ sec
1 Y091 1RT YORK YORK YORK Y091 Yo Y091 1
2 Y090 1WR WELLINGTON ROW YORK YORK YORK Yo9e Yo Y090 1
3 Y090 1uu ROUGIER STREET YORK YORK YORK Yo9e Yo Y090 1
4 Y08 9YE TOLL BAR CLOSE SELBY SELBY NORTH YORKSHIRE Y08 Yo Y08 9
5 Y08 9YD ONE ACRE GARTH SELBY SELBY NORTH YORKSHIRE Yos Yo Y08 9
6 Y08 9YB YORKDALE DRIVE SELBY SELBY NORTH YORKSHIRE Y08 Yo Y08 9
7 Y08 9YA YORKDALE COURT SELBY SELBY NORTH YORKSHIRE Yos Yo Y08 9
8 Y08 9XP HEATHER CLOSE SELBY SELBY NORTH YORKSHIRE Yos Yo Y08 9
9 Y08 9XN POPPY CLOSE SELBY SELBY NORTH YORKSHIRE Y08 Yo Y08 9
10 Y08 9XL GORSE CLOSE SELBY SELBY NORTH YORKSHIRE Yos Yo Y08 9
11 Y08 9XJ THISTLE CLOSE SELBY SELBY NORTH YORKSHIRE Y08 Yo Y08 9

141



In the images above you can see the data that is stored in the database.
Each image is a separate table and you can see that there is no duplicated
data and referential integrity is maintained. The way it reduces duplicate
data is by using foreign keys to link data to multiple records. For example,
you can have multiple sales for a house and instead of storing the address
data for the house with each sale you just link to it using a foreign key. This
can dramatically reduce the amount of space the data take up compared to
its raw form as a CSV file.

Querying Data Using Python

psycopg2
m config i t Config

config = Config()
sql_db = psycopg2.connect(f"postgresql://{config.SQL_USER}:{config.SQL_PASSWORD}@{config.SQL_HOST}:5432/house_data")
cur = sql_db.cursor()
cur.execute|("""SELECT s.price, s.date, h.type, h.paon, h.saon, h.postcode, p.street, p.town, h.houseid
FROM postcodes AS p
INNER JOIN houses AS h ON p.postcode = h.postcode
INNER JOIN sales AS s ON h.houseid = s.houseid AND h.type != 'O’
WHERE s.ppd_cat = 'A' LIMIT 10; )
results = cur.fetchall()
res results:
print(res)

(.venv) (base) morganthomas@forgans-MacBook-Air /Users/morganthomas/Documents/GitHub/housestats/web-api/. venv
usestats/web-api/web/test

(30000, datetime.date(1995, 11, 28), WS10 9LD', 'HILL STREET', 'WEDNESBURY', '
(42000, datetime.date(2000, 2 ' ’ 0 9LD', ' ', 'WEDNESBURY', '66WS
(115000, datetime.date(2019, ', '66', NS 1 ! ET' WEDNESBUI

66WS10 9LD')

(57500, datetime.date(1995, 5 ', 'HILL STREET', 'WEDNESBUR
(57000, datetime.date(1997, 9, i ! ', 'HILL STREET', 'WEDNESBUR
(25000, datetime.date(1998, 8, 3 ‘54, oLD', 'HILL STREET', 'WEDNESBURY
(83000, datetime.date(2006, p ', 'HILL STREET', 'WEDNESBURY 4WS10 9LD'
(49950, datetime.date (200! 5 57 ', 'HILL STREET', 'WEDNESBUR 57WS10 9LD')
(59950, datetime.date(200: ) 0 , 'HILL STREET', 'WEDNESBUR )
(50000, datetime.date(201 , 4 61" 'WS10 9LD', 'HILL STREET', 'WEDNESBURY', '61WS! :
(.venv) (base) morganthomas@forgans-MacBook-Air

Above you can see the code to fetch the results from the database. It first
connects to the database and then executes the query. The results are limited
to 10 for testing purposes. These are then printed on each line individually.
This is just a simple prototype of how the data is fetched as code similar to
this is used all over the programme to fetch data to be processed and then
displayed.

142



3 Aol
result.stats.type_proportions

Bl

: {D: {,.}, F: {,.}, S: {,.}, T: {,.}, all: {,.}}
: {average_change: -2.29, average_price: 271191.7346911814,..}
: {count: [10994, 13@9@, 4498, 7736], type: ["D", "S", "F", "T"1}

Performing Statistical Operation on Data

Below is a screenshot of the data produced after aggregating data for a
specific area. This shows two of the criteria met Performing Statistical
Operations’ & ’Selecting data from specific areas and aggregating it’. The
data is processed using the Polars library and then outputted in JSON format
so it can be easily integrated with a web browser. In the image, the fields
are collapsed so you can’t see their contents. This is because there are lists
containing up to 300 items in them which would take up many pages.

Web API Proof

(CEED)] morganthomas@Morgans-MacBook-Air curl https://api.housestats.co.uk/api/v1/find/CH64%201RG/MEADOW%2@VIEW/2 | json_pp -json_opt pretty,canonical
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 333 1ee 333 () () 589 @ ——:i-=:-= —=i-—-:-—- ——:——:—— 504
{
"epc_cert”
"cert_id energy-certificate/0261-3829-7224-9791-5325",
"energy_rating” : 86,
"sqr_m” : 309
3,
“paon” : "MEADOW VIEW",
"CH64 1RG",

"9FF@D969-86EC-11ED-E053-6C04A8CA6383" ,
850000,

"Wed, 15 May 2019 00:00:00 GMT",

false,

true,

A",
"MEADOW VIEW2CH64 1RG"

Below is a screenshot showing the JSON response when sending an HTTPS
request to my webserver running the Flask web API. This API can be called
programmatically using Javascript. This allows the data to be shown in a
web browser or displayed in graphs.

143



Web UI Proof

Here is the link to the website housestats.co.uk. Below are links to videos
showing the website being used. The website can be accessed on any device
with an up-to-date web browser and an internet connection.

e Home Dashboard
e Area Statistics

e Search for Historic Sales

Loading Historical Data

Below you can see a screenshot of the timings when making an HTTPS
request to the web API route to fetch historical data. Unfortunately, I was
not able to tick this one off of the success criteria. The cause of this was
the server that the database was running on. This led to SQL transactions
taking anywhere between 0.5 seconds and 5 minutes depending on how much
data was being returned. This could be fixed by using an SSD on the server
so it can read the data quicker resulting in a shorter query time. Although it
may not have met the success criteria it is still well within acceptable limits
as shown by my stakeholders.

/dev/null -s https://api.housestats.co.uk/api/v1/find/CH64%201RG/MEADOW%20VIEW/2

¢ ct:  0.021840s
time_a| 0.055785s
time_pretransfer: 0.055918s

time_redirect: 0.000000s
time_starttransfer: 0.738506s

0.738636s
(base) morganthomas@Morgans-MacBook-Air _ﬂ}

Loading Satistics for an Area

Below are the timings for loading statistics for a given area. You can see
that this was able to fetch the data within 2000ms and then return it in the
JSON format. There is also a video below showing the whole process in the
web UL [Loading Area Statistics

144


https://housestats.co.uk
https://youtu.be/FV5H8ISv26o
https://youtu.be/pi19YE_6EKM
https://youtu.be/voWWdidUkp8
https://youtu.be/pi19YE_6EKM

(base) morganthomas@Morgans-MacBook-Air P curl https://api.housestats.co.uk/api/v1/analyse/town/chester| json_pp -json_opt pretty,canonical
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 79 1ee 79 ] ] 507 R -~ ——:-—:-- 526
{
"result” : "https://api.housestats.co.uk/api/v1/get/CHESTERTOWN",
"status” : "ok”

3
(base) morganthomas@Morgans-MacBook-Air ‘-> curl -w "@curl-format.txt" -o /dev/null -s https://api.housestats.co.uk/api/v1/get/CHESTERTOWN

time_namelookup: ©.005760s
time_connect: ©.019760s
time_appconnect: ©.056758s
time_pretransfer: ©.056880s
time_redirect: 0.000000s
time_starttransfer: @.267560s

time_total: @.300801s

Other Unmet Criteria

There were two other criteria I was unable to meet but these were due to
design decisions I made. The loading of new data into the website was instead
changed for a programme which would automatically detect new data on the
government website and then insert it into the database and clear the cache.
This is a lot more efficient as it removes the need for a human to be involved
and is a lot quicker as it happens as soon as there is an update. The other
unmet criteria is settings time frames for the data. This again was not met
due to a design decision. Instead, the user can zoom in on the graph to see
the data from a specific month.

4.3 Usability Features

[ Q. Chesteq ]

Chester Town
Chester District
Chesters street
Chesterman street
i Motel® Chesterton street
WeH =4 Chester Way Street

flonth 01/11/2022

I managed to incorporate a lot of usability features in my solution. For

145



example, when searching for a specific area suggestions come up making it
easier to search. This is shown in the image above.

£980K

Most Expensive House
Property Types Monthly Average Price

M Dctaiched NN Semi-Detatched NN Fiat [ Detatched [ Flat [ Semi-Detatched [ Terrace Al
- Terace o000

C

450,000
400,000
350,000
300,000

uuuuuuu

o
PFI LIS IS I L OISO O D IO D60 S8 DD
FLELELLTEFEFES T TP

The web page is responsive so it works on many different types of devices
and the content scales to fit the device making a better user experience.
This means that it can be accessed on a portable device which is useful if a
surveyor is on-site and they don’t have access to a computer it also makes it
more accessible as almost all web traffic is done by mobile phones so makes
the site more appealing if it also works on a phone.

One of the complaints I got from my stakeholders though is that the data
doesn’t have any explanations so if you don’t know much about housing you
might not understand what any of them are. My solution for this would be
to add a tooltip for each of the stats which when hovered over would show
information about it.

4.4 Limitations

My biggest limitation was the hardware that I was running it on. This often
causes my programme to crash as it ran out of memory since the data could
often be more than 10GB when processing. It also meant that database
queries would take a long time as the CPU had a relatively low clock speed
and it was using HDD so it would take quite a while to read data since
they aren’t very good at random reads. All of this results in API requests
are taking longer than they should. This could be quite easily fixed by just
buying servers with CPUs that have higher clock speeds and more cores along
with NVME SSDs but unfortunately, I did not have the capital for this.

146



One of the other limitations is the latency of the data provided by the
government. House sales have 3 months to be registered. Most of the sales in
the UK are registered within 2 months of selling. Therefore my programme
will always be two months behind the actual figure and won’t be able to
provide the most accurate data to its users. I am unable to resolve this issue
as the government is unfortunately out of my control.

The other limitation related to the government is how far back the sales
go. The earliest sales in the dataset are from 1995 because before then the
value of land sales was not required to be logged with HM Land Registry.
This again cannot be fixed as there are no other datasets with house sales
before 1995 that I can access as they are all behind paywalls and I do not
have the capital to access them. If I had the capital a lot of large banks have
datasets from their mortgages which can often date back hundreds of years.

4.5 Maintenance

Fortunately, there are only two maintenance issues with my programme. One
of the problems is the way the government publish their data. At the moment
they publish their data in CSV format but they could decide to change this
would result in the update module failing so no new data is added. As of right
now, the Land Registry is not planning on changing the way they distribute
their data but that could change.

Another issue is maintaining the front end to be compatible with modern
browsers. Modern browsers are updated frequently resulting in the javascript
API changing and old features being no longer supported and new features
being added to replace them. Then you have to factor in that not all browsers
get these new features at the same time so some browsers will get the new
features before others. This can be combatted by using a javascript bundler
called Babel. Babel converts the Javascript code into vanilla Javascript using
only the most basic functions that are supported on all browsers.

147



Chapter 5

Appendix

5.1 Sales Ingest

5.1.1 __init__.py

from ingest import Ingest
import asyncio
import atexit

if _name__ =— 7 __main__":
ingester = Ingest ()
atexit.register (asyncio.run, ingester.remove_status

()

asyncio.run(ingester.main_loop())

5.1.2 ingest.py

import os

import re

import socket

from datetime import datetime
from pickle import loads
from typing import List

148




from asyncpg import connect
from confluent_kafka import Consumer
from dotenv import load_dotenv

class Ingest():
def __init__(self, test=False) —> None:

self. _load_env ()
if not test:
self. _consumer = Consumer ({
"bootstrap.servers ’: self. KAFKA,
"group.id ’: 'INGESTER’,
"auto.offset .reset’: ’earliest’
1)
self. _areas = ["postcode”, "street”, "town” ,
district”, ”"county”, "outcode”, "area”, ”
sector” |
# Regex to split postcode into inward, outward
& area
self. _postcode.re = re.compile(” " (?7:(?P<al>[Gg
J[Ii][Rr]) (?P<dl>)- (?P<s1>0)(?P<ul>[Aa]{2}))
| (7:(7:(7:(7P<a2>[A"Za—z]) (7P<d2>[0—-9]{1,2})
Y (7:(7:(7P<a3>[AZa—z|[A-Ha-hJ-Yj—y]) (?7P<d3
>[0-9]{1,2})) | (?:(7:(?P<ad>[AZa—z]) (?P<d4
>[0-9][AZa—=z]))|(?:(?P<ab>[AZa—z][A-HahJ-
Yi—y]) (?7P<d5>[0—9]?[AZa—=z]))))) - (7P<s2
>[0—-9]) (?P<u2>[A—"Za—z]{2}))$”, flags=re.
IGNORECASE)

”

def _load_env(self):

# Loads the enviroment wvariables

load _dotenv ()

self . DB = os.environ.get ("DBNAME’ , ”house_data
77)

self . USERNAME = os.environ. get ("POSTGRES_.USER”

)

149




self . PASSWORD = os.environ.get (”
POSTGRES PASSWORD” )

self . HOST = os.environ.get ("POSTGRES_HOST” )
self . KAFKA = os.environ. get ("KAFKA”)

async def _connect_db(self):

self. _conn = await connect(f”postgresql://{self

._USERNAME} : { self . PASSWORD}@{ self . HOST}/{
self . DB}”)

def extract_parts(self, postcode: str) —> List[str
|:
try:
if (parts := self._postcode_re.findall(
postcode) [0]) != None: # splits
postcode & checks if it is wvalid
parts = list (filter (lambda x : x != 77|
parts)) # Removes empty parts from
postcode
outcode = parts[0] + parts|[1]
area = parts[0]
sector = parts[0] + parts[l] + 7-7 +
parts [2]
return [outcode, area, sector]| #

Returns the parts of the postcode
else:

return [77 )77 77

except IndexError:

return [77 )77 77

async def _set_status(self, status: str) —> None:

consumer_id = socket.gethostname ()
try:

await self._conn.execute (”"INSERT-INTO-

settings - (name, -data) -VALUES- ($1,-%2);”,
consumer_id , status)

except:

150




await self._conn.execute (”DELETE-FROM-
settings -WHERE-name-=-$1" , consumer_id)
await self._conn.execute (”"INSERT-INTO-

settings - (name, -data) -VALUES- ($1,-%2);”,
consumer_id , status)

async def remove_status(self):

consumer_id = socket.gethostname ()
print ("DELETING” )

await self._conn.execute (”DELETE-FROM-settings -
WHERE- name-=-$1" , consumer_id)

async def _insert_areas(self, sale: List,
postcode_parts: List[str]):

areas = [sale[3], sale[9],

sale[11], sale[12],
sale[13],

postcode_parts [0] , postcode_parts|[1],

postcode_parts [2]] # Eztracts areas

values from sale
values = []

for idx, area_type in enumerate(self. _areas):

area_data = (area_type, areas[idx])
values .append (area_data)

await self._conn.executemany (”””INSERT INTO
areas (area_type, area)

VALUES ($1,$2) ON
CONFLICT (area_type,

area) DO NOTHING;
”77”’V&1ues)

async def main_loop(self):
print (” Waiting - for -messages” )
await self._connect_db ()
self . _consumer.subscribe (["new_sales” )
while True:
await self._set_status ("WAITING”)

msg = self. _consumer.poll (1.0) # Fetches
the latest message from kafka

151



await self. _set_status (”PROCESSING”)

if msg is None: #Checks the message isnt
empty
continue

if msg.error(): # Checks there are no
errors

print (" Consumer- error: -{}” .format (msg.

error ()))

continue
sale: List = loads(msg.value()) # Converts

the bytes into a python list
await self. _process_sale(sale)

async def _process_sale(self, sale):
async with self._conn.transaction ():
if sale[—1] in [7C”, "D"]:
await self._conn.execute (”DELETE-FROM-
sales “WHERE- tui=3$1", sale[0]) #
Delete sale
if sale[—1] in ["A”, 7C"]:

postcode_parts = self.extract_parts(
sale [3]) # Fetches the postcode
parts

await self._insert_areas(sale,
postcode_parts)

houselD = str(sale[7]) + str(sale[8]) +
str(sale [3])

await self._conn.execute (”"INSERT-INTO-
postcodes -\

(postcode , -street , -town
,~district ,-county, -outcode ,-area,-sector)-\

//////////////////////// VALUES- ($1,%$2,%$3,%4,%5,
$6,$7,$8) -ON-CONFLICT- ( postcode ) -DO-NOTHING; ” |

sale [3], sale[9], sale

[11], sale[12], sale

[13], postcode_parts

[0],

152



postcode_parts|[1],
postcode_parts [2])
# Insert into
postcode table

await self._conn.execute (”INSERT-INTO-
houses - (houselD , -PAON, -SAON, - type , -
postcode) -\
////////////////////////// VALUES- ($1,$2,33,$4,35)
-ON-CONFLICT- (houseID ) -DO-NOTHING; ” ,
houseID , sale[7], sale
(8], sale[4], sale
[3]) # Insert into
house table

new = True if sale[5] = "Y” else False
# Convets to boolean type
freehold = True if sale[6] = "F” else

False # Converts to boolean type
date = datetime.strptime(sale[2], "%Y%
m-%d -YTH: %M ) # Converts string to
datetime object
await self._conn.execute (”"INSERT-INTO-
sales - (tui,-price,-date, -new, -
freehold ,-ppd_cat , ~houselD) -\
//////////////////////////// VALUES- ($1,%2,%3,%4,8%5,%6,
$7) -ON-CONFLICT- ( tui) -DO-NOTHING; " |
sale [0], int(sale[1l]), date
, new, freehold , sale
[14], houselD) # Insert

into sales table

if __name. . = 7 __main__":
import asyncio
x = Ingest ()
asyncio.get_event_loop ().run_until_complete (x.
main_loop () )

153




5.1.3 Dockerfile

FROM python:3.9.7
WORKDIR /app

COPY ./ingester
COPY ./requirements.txt

RUN python3 —m pip install —upgrade pip setuptools

wheel

RUN python3 —m pip install —r requirements.txt

CMD [”python3”, 7 __init__.py”]

5.1.4 requirements.txt

asyncpg==0.27.0
certifi==2022.12.7
confluent —kafka==2.0.2
python—dotenv==0.21.1
sentry—sdk==1.14.0
urllib3==1.26.14

5.2 Update Checker

5.2.1 __init__.py

from check _update import checkForUpdate

if __name__ = 7 __main__":

154




x = checkForUpdate ()
x.run ()

5.2.2 check update.py

import time

from csv import reader
from hashlib import sha256
from io import StringlO
from os import environ
from pickle import dumps

import requests

import schedule

from confluent_kafka import Producer
from dotenv import load_dotenv

from psycopg2 import connect

from requests import get

class checkForUpdate () :
def __init__(self) — None:
self. _file_link = "http://prod.publicdata.
landregistry .gov.uk.s3—website—eu—west —1.
amazonaws .com/pp—monthly—update . txt”
self. _load_env ()
self. _conn = connect ({”dbname={self. DB}-\
/////////// user={self . USERNAME} - password={self .

PASSWORDY} -\
//////////// host={self . HOST}”) # Connect to the
database
self._cur = self. _conn.cursor ()
self. _producer = Producer({”bootstrap.servers”:

self . KAFKA}) # Connect to Kafka cluster

def _load_env(self):
# Loads enviroment variables

155




def

def

load _dotenv ()

self . DB = environ.get ("DBNAME’ , "house_data”)

self . USERNAME = environ . get ("POSTGRES_USER” )

self . PASSWORD = environ . get ("POSTGRES PASSWORD
”)

self . HOST = environ. get ("POSTGRES HOST” )

self . KAFKA = environ. get ("KAFKA”)

_fetch_file (self):
print (7 fetching - file”)
file = get(self. _file_link).content # Download
monthly file from land registry
file_hash = sha256(file).hexdigest () #
Calculate hash of file
self. _cur.execute (”SELECT-data -FROM-settings -
WHERE-name="update_hash ’;”)
prev_hash = self. _cur.fetchone() # Check to
see if file has been inserted already
if prev_hash is not None:
prev_hash = prev_hash [0]
if file_hash != prev_hash: # Compare hash to
hash of old file
print ("New- file -being-uploaded”)
self. _update_database(file , file_hash)
else:
print ("No-new- file -yet”)

_update_database (self , file, file_hash):
self. _send_file_db (file)
self. _cur.execute(”””UPDATE settings SET data =
%s
WHERE name="update_hash’

NN

returning name; ,
(file_hash ,))
# Changes previous hash to most recent one

if self. _cur.fetchone() is None:

156




self. _cur.execute(”””INSERT INTO settings (

name, data)
VALUES (’update_hash ’, %s

(file_hash ,))
# Inserts update_hash row if it doesn’t
extst
self . _conn.commit ()

def _send_file_db (self, file):
csv_file = reader (StringlO (file.decode(”UTF-8")
))
csv_file = map(lambda x: dumps([x[0][1: —1]] + |
i for i in x[1:]]), csv_file) # Remowve
braces from tui
while True: # While is quicker than for loop
try:
list_bytes = next(csv_file) # Converts
list to byte array
while True:
try:
self. _producer.produce (”
new_sales” , list_bytes) #
Send each sale as string to
kafka
self. _producer.poll(0)
break
except BufferError:
print (time.time (), ”Flushing”)
self . _producer. flush ()
print (time.time (), ”Finished -
flush”)
except Stoplteration:
self. _producer. flush ()
break
self. _cur.execute(”””UPDATE settings SET data =
%s

157




WHERE name:q@St,updated 7;. 2999
(time . time() ,))
self . aggregate_counties ()

def aggregate_counties(self):
self. _cur.execute (”SELECT- % -FROM- settings -WHERE
-name-=- "last_updated ’-OR-name-=-"
last_aggregated_counties ’-ORDER-BY-name-DESC
;")
times = self. _cur.fetchall ()
print (times)
if float(times[0][1]) > float(times|[1][1]):
self. _cur.execute (”SELECT- % -FROM- settings -
WHERE- data -=- "WAITING ;)
res = self. _cur.fetchall ()
if len(res) = 4:
self. _cur.execute (”SELECT- area -FROM-
areas -WHERE- area_type -=-"area ’;”)
counties = self._cur.fetchall ()
self. _cur.execute(”””UPDATE settings
SET data = ’true’
WHERE name="
agregating_countiy

)., J?})}))
)

self . _conn.commit ()
for county in counties:
county = county[0] if county != (
,) else ’'CH’
resp = requests.get(f”https://api.
housestats.co.uk/api/vl/analyse/
area /{county}”)
print (county, resp.json()[”status”

D)

’ 0

if county = counties[—1][0]:
url = resp.json () ["result”]
while True:
resp = requests.get(url)

158



def run(self):
while True:
time . sleep (30)
if __name__ = " __main__":

x = checkForUpdate ()
x.aggregate_counties ()

# z.run()

if resp.json()[”status”]| =

”SUCCESS” :

self. _cur.execute (”
UPDATE- settings -SET-
data -=-%s -WHERE- name

Y

last _aggregated_count

(time .
time
()
)

self. _cur.execute (”
UPDATE- settings -SET -
data-=-"false -WHERE
-name="’
agregating_counties

7,77)

self . _conn.commit ()

break

else:

time.sleep (5)

schedule.every (5).minutes.do(self. _fetch_file)

schedule.run_pending ()

5.2.3 Dockerfile

FROM python:3.9.7

159

ies



WORKDIR /app

COPY ./checker
COPY ./requirements.txt

RUN python3 —m pip install —upgrade pip setuptools

wheel

RUN python3 -m pip install —r requirements.txt

CMD [”python3”, 7 __init__.py”]

5.2.4 requirements.txt

certifi==2022.12.7
charset —mormalizer==3.0.1
confluent —kafka==2.0.2
idna==3.4

psycopg2==2.9.5
python—dotenv==0.21.1
requests==2.28.2
schedule==1.1.0
sentry—sdk==1.15.0
urllib3==1.26.14

5.3 Data Processor

5.3.1 __init__.py

from main import Processor

if __name_._. = 7 __main__":
print (”loading”)
processor = Processor ()

160




print (” Running”)
processor.main_loop ()

5.3.2 aggregations.py

from typing import Dict

import polars as pl
from load_data import Loader
from datetime import timedelta

class Aggregator():
def __init__(self, data: Loader) —> None:
self._data = data.data
self. _latest_date = data.latest_date

def _calc_average_price(self) —> Dict:
df = self._data.partition_by (”type”, as_dict=
True)
house_types_means = {}
for house_type in df:
temp_df = df [ house_type]
house_types_means |[house_type] = temp_df \
.sort (
date

")

groupby_dynamic

(77
date

2
I

b

every
:77 1

161



(77

price

77).

to_di

(
asS_Ss¢g

False

)
all_sales = self._data.lazy ()
std = all_sales.select(pl.col(”price”)).std().
collect () [0, O]
mean = all_sales.select(pl.col(”price”)).mean()
.collect () [0, O]
temp_df = all_sales.filter ((pl.col(”price”) <
mean+(2xstd)))
house_types_means|[” all”] = all_sales \
.sort (7date”) \
.groupby_dynamic (”
date” , every="1
mo” ) \
.agg(pl.col(”price”
).log () .mean() .

exp ()) \
.collect () \
.to_dict (as_series=
False)

data = {
"type”: [key for key in sorted (

house_types_means) |,

162

ct

ries



"prices”: [house_types_means|key|[” price” ]
for key in sorted(house_types_means)],
”"dates”: house_types_means|[” all”|[”date” ]

}

return data

def _remove_outliers(self, df: pl.DataFrame):
std = df.select (pl.col(”price”)).std()[0, 0]
mean = df.select (pl.col(”price”)).mean() [0, O]
df = df.filter (pl.col(”price”) < mean + (3xstd)

)

return df

def _calc_type_proportions(self) —> Dict:
df = self._data
df = df.unique(subset=["houseid” )
df = df.groupby(”type”).count ()
data = df.to_dict (as_series=False)
return data

def _calc_monthly _volume(self) — Dict:
df = self. _data.partition_by ("type”, as_dict=
True)
monthly_volumes = {}
for house_type in df:
temp_df = df[house_type].lazy ()
volume = temp_df \
.sort ("date”) \
.groupby_dynamic (" date” , every="1mo”) \
.agg(pl.col(”price”).count().alias(”
volume” ) ) \
.collect () \
.to_dict (as_series=False)
monthly_volumes [ house_type] = volume

monthly volumes [” all”] = self. _data.sort(”date”

)\

163




.groupby_dynamic (" date” ; every="1mo") \

.agg(pl.col(”price”).count().alias(”
volume”)) \

.to_dict (as_series=False)

data = {
"type”: [key for key in sorted(
monthly_volumes) |,

”volume” : [monthly_volumes [key |[”volume” |
for key in sorted(monthly_volumes)],
"dates”: monthly _volumes|[” all” |[” date” |

}

return data

def _calc_monthly_price_volume (self) —> Dict:
df = self. _data.partition_by ("type”, as_dict=
True)
monthly_price_volume = {}
for house_type in df:
temp_df = df [house_type].lazy ()
volume = temp_df \
.sort ("date”) \
.groupby_dynamic (" date” , every="1mo") \
.agg(pl.col(”price”) .sum().alias (”
volume”)) \
.collect () \

.to_dict (as_series=False)

monthly_price_volume [ house_type| = volume
monthly_price_volume [” all”] = self._data.sort (”
date”) \

.groupby_dynamic (”date” ; every="1mo") \
.agg(pl.col(”price”).sum().alias (”
volume”)) \
.to_dict (as_series=False)
data = {
"type”: [key for key in sorted (
monthly _price_volume) |,

164




def

def

"volume” : [monthly_price_volume [key |[”
volume” ] for key in sorted(
monthly_price_volume) |,

"dates”: monthly_price_volume[” all” ][” date”
]

}

return data

_calc_all_perc(self) —> Dict:

data = self._data.partition_by ("type”, as_dict=

True)
monthly_perc = {}
for house_type in data:
monthly_perc|[house_type] = self.

_calc_ind_percentage (data|[house_type]) .
to_dict (as_series=False)

monthly_perc[” all”] = self. _calc_.ind_percentage

(self._data).to_dict(as_series=False)
return monthly _perc

_calc_ind_percentage (self , df: pl.DataFrame) —>
pl.DataFrame:
df = df.sort(”date”) \
.groupby_dynamic (" date” , every="1mo”) \
.agg(pl.col(”price”).log().mean().exp()
.alias (7avg_price”))
df = df.with_columns (|
pl.col(”date”).dt.month().alias ("month”)
pl.col(”date”).dt.year().alias("year”)
1)
df = df.groupby (”month”) .apply(self.
_calc_percentages_months)
df = df.drop(["year”, "month” , "prev_year”,
avg_price”])
df = df.sort (”date”)
return df

2

165




def _calc_percentages months(self, data: pl.
DataFrame) :
df = data.sort(”date”).with_columns (
pl.col(”avg_price”).shift ().alias (”
prev_year”)

)

df = df.filter (pl.col(”prev_year”).is_not_null

)

df = df.with_columns (
(((pl.col(”avg_price”)—pl.col(”prev_year”))
/pl.col(”avg_price”)*100)/12). alias (”
perc_change”)

)

return df

def _quick_stats(self, data) —> Dict[str, float]:

try:

current_month = data[”average_price” |[”
dates” |[ —2]

current_average = data[” average_price” ][”
prices” |[4]] —2]

prev_average = data[” average_price” |[”
prices” |[4]] —3]

current_average_change = round (100 (

current_average—prev_average )/
prev_average ,2)
except Exception:

return {
"current_month”: 0,
"average_price”: 0,
"average_change”: 0,
"current_sales_volume”: 0,
"sales_volume_change”: 0,
"current_price_volume”: 0,
"price_volume_change”: 0,
"expensive_sale”: 0

166




try:
current_sales_vol = data[”

monthly_sales_volume” | [”volume” | [4][ — 2]

prev_sales_vol = data[”monthly_sales_volume
717 volume” | [4]] — 3]
current_sales_vol_change = round(100x(

current_sales_vol—prev_sales_vol)/
prev_sales_vol ,2)

except IndexError:

current_sales_vol = 0
current_sales_vol_change = 0
try:
current_price_vol data[”
monthly_price_volume” | [”volume” | [4][ — 2]
prev_price_vol = data[”monthly _price_volume

7117 volume” | [4][ —3]

current_price_vol_change = round(100x(

current_price_vol—prev_price_vol)/
prev_price_vol ,2)
except IndexError:

current_price_vol = 0
current_price_vol_change = 0

expensive_sale =

(self._data

.filter (pl.col(”date”).is_between (
current_month ,

(days=31)))

.filter (pl.col (" price”) = pl.col (" price”).
max () )

) [0,0]

current_month + timedelta

quick_stats {
?current_month” :

"average_price”:

"average_change”: current_average_change ,
"current_sales_volume”: current_sales_vol .,

current_month ,
current_average ,

167



if

"sales_volume_change”:
current_sales_vol_change ,
“current_price_volume”: current_price_vol
"price_volume_change”:
current_price_vol_change |,
"expensive_sale”: expensive_sale

}

return quick_stats

def get_all_data(self) — Dict:
data = {
7average_price”: self. _calc_average_price ()

"type_proportions”: self.
_calc_type_proportions (),
"monthly_sales_volume”: self.
_calc_monthly_volume (),
"monthly_price_volume”: self.
_calc_monthly_price_volume (),
"percentage_change”: self. _calc_all_perc ()
¥
data|” quick_stats”] = self. _quick_stats(data)
return data

__name__ = 7 __main__":

import time
import psycopg?2

start = time.time ()

conn = psycopg2.connect(” postgresql://house_data:
IriFahwbJwfv2388neiluOMI@192.168.4.30:5432/
house_data”)

data_loader = Loader (”CH3-5”, ”sector”, conn.cursor
()

print (f”loaded _data-—-{time.time () —-start}”)

agg = Aggregator(data_loader)

168




data = agg.get_all_data ()

inital_price = 249000

final _price = 249000

for month in data|” percentage_change” |[”S” ]|
perc_change” ][281:]:
final _price %= 1+(month/100)

print (final _price)

7

5.3.3 load _data.py

from datetime import datetime, timedelta

import polars as pl
from typing import List
from dateutil.relativedelta import relativedelta

class Loader():
def __init__(self, area: str, area_type: str,
db_cur) —> None:

self. _cur = db_cur

self . area_type = area_type.lower ()

self .area = area.upper|()

self._areas = ["postcode”, "street”, "town” ,
district”, ”"county”, "outcode”, "area”,
sector”|

bRy

if self.area = and self.area_type =

7.

7

self. _cur.execute(”””SELECT s.price, s.date
, h.type, h.paon, h.saon, h.postcode, p.

street, p.town, h.houseid
FROM postcodes AS p
INNER JOIN houses AS h ON p.

postcode = h.postcode

INNER JOIN sales AS s ON h. houseid

= s.houseid AND h.type /=
WHERE s.ppd_cat = "A’7;777)
data = self. _cur.fetchall ()

169




self. _format_df(data)
else:
if self.area_type not in self. _areas:
raise ValueError(”Invalid-area-type”)
else:
if self.verify_area():
data = self.fetch_area_sales ()
self. _format_df(data)

def verify_area(self):
self. _cur.execute ({”SELECT- postcode -FROM-
postcodes -WHERE- { self . area_type}-=-%s -LIMIT -
1;7, (self.area,))
if self._cur.fetchall() is not []:
return True
else:
raise ValueError (f”Invalid-{self.area_type}
-entered”)

def fetch_area_sales(self) —> List:
query = t77”SELECT s.price, s.date, h.type, h.
paon, h.saon, h.postcode, p.street, p.town,
h.houseid
FROM postcodes AS p
INNER JOIN houses AS h ON p.postcode =
h.postcode AND p.{ self.area_type} =
%s
INNER JOIN sales AS s ON h.houseid = s.
houseid AND h.type != 'O’
WHERE s.ppd_cat = A’ AND s.date < %s;
self. _cur.execute(query, (self.area, self.
latest_date))
data = self. _cur.fetchall ()
if data = []:
raise ValueError(f”No-sales-for-area-{self.
area}”)
else:

170




return data

def _format_df(self, data):
self._data = pl.DataFrame(data

columns=["price” ,”
2 2 7 7
date” ,"type”
paon” ,”saon” |
" postcode”
7
)
street”
7 ?town”
b
)
houseid

77]
Y

orient="row” )

self. _data = self. _data.with_column (

pl.col(’date’).apply(lambda x: datetime (*x.
timetuple () [: —4])).alias(7dt”)

)

self._data = self. _data.drop(”date”)

self._data = self._data.with_column (
pl.col(7dt”).alias (”date”)

)

self._data = self. _data.drop(”dt”)

@property
def data(self) — pl.DataFrame:
return self. _data

@property
def latest_date(self):

self. _cur.execute (”SELECT- date -FROM- sales -ORDER

-BY-date -DESC-LIMIT-1;")
latest_date = self._cur.fetchone/()
if latest_date is not Nomne:
latest_date = datetime.combine(latest_date
[0], datetime.min. time ())

171




if latest_date > (datetime.now() —
timedelta (days=60)):
start = datetime.now().replace (day=1)
return start — relativedelta (months=2)
else:
return latest_date [0]

if _name_._. = 7 __main__":

import psycopg?2

conn = psycopg2.connect (” postgresql://house_data:
IriFahwbJwfv2388neiluOMIQ192.168.4.30:5432/
house_data”)

loader = Loader(”CH”, "area”, conn.cursor())

print (loader.latest_date)

print (loader.data.head())

5.3.4 main.py

import os

import time

from datetime import datetime
from pickle import loads
from typing import Dict

import psycopg?2

from aggregations import Aggregator
from confluent_kafka import Consumer
from load_data import Loader

from pymongo import MongoClient

class Processor():
def __init__(self):
self. _load_env ()
self._sql_conn = psycopg2.connect(f” postgresql
://{self. SQLUSERNAME}:{ self . SQLPASSWORD}
@{self. SQL.HOST}:5432/ house_data”)

172




def

def

self._cur = self. _sql_conn.cursor()
self . _mongo_conn = MongoClient ({”mongodb://{
self . MONGO.USERNAME}: { self . MONGOPASSWORD}
@{self. MONGOHOST}:27017/7authSource=
house_data”)
self. mongo.db = self. mongo_conn[”house_data”]
self . _consumer = Consumer ({
"bootstrap.servers’: self. KAFKA,
"group.id’: PROCESSOR’,
"auto. offset .reset’: “earliest’

1)

_load_env (self):

# Loads the enviroment wvariables

self . DB = os.environ.get (”"DBNAME’ , ”"house_data
")

self . SQL.USERNAME = os.environ.get (”
POSTGRES_USER” )

self . SQLPASSWORD = os.environ.get (”
POSTGRES PASSWORD” )

self . SQL.HOST = os.environ. get ("POSTGRES_HOST”
)

self . KAFKA = os.environ. get ("KAFKA”)

self . MONGOHOST = os.environ. get ("MONGOHOST”)

self . MONGO.USERNAME = os.environ.get (”
MONGO.USERNAME” )

self . MONGOPASSWORD = os.environ.get (”
MONGOPASSWORD” )

main_loop (self) —> None:
self . _consumer.subscribe ([” query_queue”])
print (” Waiting - for - queries”)
while True:
msg = self._consumer.poll (1.0) # Fetches
the latest message from kafka
if msg is None: #Checks the message isnt
empty
continue

173




if msg.error(): # Checks there are no
errors
print (" Consumer- error: -{}” .format (msg.

error()))

continue

query: tuple = loads(msg.value()) # (area,
area_type)

query = tuple (map(lambda x: x.upper(),
query)) # Makes all items upper case

print (f”{time.time () }-—-{query [0]}({ query
[1]3)7)

if not self._check_cache (xquery):

print (query, "—-Aggregating -data”)
self. _get_stats (xquery)

else:
print (query, ”7—-Cache-hit”)
continue

def _check_cache(self, area, area_type) —> bool:
query_id = self._calc_query_id (area, area_type)
query = self._mongo_db.cache. find_one ({”_id”:
query_id })
if query is not None:
last _updated = self. _get_last_updated ()
if query[”last_updated”] < last_updated:
return False
return True
else:
return False

def _get_last_updated(self):
self. _cur.execute ("SELECT-*-FROM- settings -WHERE

-name-=-"last_updated ")
last _updated = self. _cur.fetchone ()
if last_updated == None:
return datetime.fromtimestamp (0)
else:

174




if last_updated[1] is not None:
return datetime.fromtimestamp (float (
last _updated [1]))
else:
return datetime.fromtimestamp (0)

def _get_stats(self, area: str, area_type: str) —>
bool:
load_start = time.time ()
data = self. _get_area_data(area, area_type)
load_time = time.time()—load_start
if data is not None:
start = time.time ()
stats = self._get_aggregation (data)
time_taken = time.time()—start
query_id = self. _calc_query_id (area,
area_type)
self._cache_query(stats, query_id, area,
area_type , time_taken , load_time)
return True
else:
return False

def _cache_query(self, stats: Dict, query_id: str,
area: str, area_type: str, exe_time: float ,
load_time: float):
query = self._mongo_db.cache.find_one ({”_id”:
query_id })
if query is not None:
self . _mongo_db.cache.update_one(
{?_id”: query_id},
{7 $set”: {
"data”: stats,
"last_updated”: datetime.now()
"exec_time” : exe_time ,
"load_time”: load_time

}

175




}
)

else:
document = {
7 _id”: query_id ,
“area” : area,
7area_type”: area_type,

"data”: stats,

”last_updated”: datetime.now(),
"exec_time” : exe_time ,
"load_time” : load_time

}

self. _mongo_db.cache.insert_one (document)

def _calc_query_id(self, area: str, area_type: str)
—> str:
query_id = (area + area_type).replace(”-", 77)
return query_id

def _get_area_data(self, area: str, area_type: str)

try:
if area = 7"ALL” and area_type = "COUNIRY”
lodr = Loader(””, 7”7, self. _cur)
else:
lodr = Loader(area, area_type, self.
_cur)

return lodr
except Exception as e:
pass # Store error in db with the query
data

def _get_aggregation(self, loader: Loader) —> Dict:

agg = Aggregator(loader)
data = agg.get_all_data ()

176




return data

if _name_._. = 7 __main__":
processor = Processor ()
processor.main_loop ()

5.3.5 Dockerfile

FROM python:3.10.8
WORKDIR /app
COPY ./processor

COPY ./requirements.txt

RUN python3 —m pip install —upgrade pip setuptools
wheel
RUN python3 —m pip install —r requirements.txt

CMD [”python3”, 7 __init__.py”]

5.3.6 requirements.txt

certifi==2022.12.7
confluent —kaftka==2.0.2
contourpy==1.0.7
cycler==0.11.0
dnspython==2.3.0
fonttools==4.38.0
kiwisolver==1.4.4
numpy==1.24.1
packaging==23.0
Pillow==9.4.0
polars==0.15.18
psycopg2==2.9.5

177




pymongo==4.3.3
pyparsing==3.0.9
python—dateutil==2.8.2
sentry—sdk==1.14.0
six==1.16.0
typing_extensions==4.4.0
urllib3==1.26.14

5.4 Web API

5.4.1 __init__.py

import os

import psycopg?2

from config import Config

from flask import Flask, current_app

from flask_cors import CORS

from pymongo import MongoClient

from sentry_sdk.integrations.flask import
FlaskIntegration

def create_app(config_class=Config) —> Flask:
app = Flask(__name__)
app.config.from_object (config_class)
cors = CORS(app, resources={r”/api/«": {"origins”:

"+71})

mongo_db = MongoClient ( f”mongodb://{app.config|’
MONGOUSER "] } : { app . config [ 'MONGOPASSWORD '] } @{
app.config [ 'MONGOHOST’|}:27017/7 authSource=
house_data”)

sql_db = psycopg2.connect ({” postgresql://{app.
config [ 'SQL_USER ]| }:{ app. config [ "SQLPASSWORD ’| }
@{app.config [ SQLHOST '] }:5432/ house_data”)

178




with app.app_context ():
current_app .mongo_.db = mongo_db.house_data
current_app.sql_db = sql_db

from app.api import bp as api_bp
app.register_blueprint (api_bp, url_prefix="/api/vl”

)

@app . route (7 /)
def checker():
return "UP”

return app

5.4.2 config.py

import os
from dotenv import load_dotenv

load _dotenv ()
basedir = os.path.abspath(os.path.dirname( __file__))

class Config:
SECRET KEY = os.environ.get ( 'SECRETKEY ")
SQL_USER = os.environ. get ("POSTGRES_USER” )
SQLPASSWORD = os.environ . get ("POSTGRES PASSWORD” )
SQLHOST = os.environ . get ("POSTGRES_HOST”)
MONGOHOST =os . environ . get ("MONGOHOST” )
MONGOUSER = os.environ . get ("MONGOUSERNAME" )
MONGOPASSWORD = os.environ . get ("MONGOPASSWORD” )

5.4.3 api/__init__.py

from flask import Blueprint

179




bp = Blueprint (”api”, __name__)

from app.api import routes

5.4.4 routes.py

import urllib.parse
from datetime import datetime
from typing import List, Tuple

from app.api import bp, search_area_funcs

from app.celery import analyse_task , valuation_task

from flask import abort, current_app, jsonify , request,
url _for

from app.api import epc_cert

from app.api import country

@bp.route (”/analyse/<string:area_type>/<string:area>")
def index(area_type, area):
with current_app.app_context():
query_id = area.upper() + area_type.upper ()
result = current_app.mongo_db.cache.find_one ({”
_id”: query_id})
if result is None:
task = analyse_task.delay(area, area_type)
return jsonify (
status="ok” ,
task_id=task.id,
result=f"https://api.housestats.co.uk{
url_for ("api.fetch_results’,query_id=
query_id)}?task_id={task.id}”
)
else:
return jsonify (
status="ok” ,
result=f"https://api.housestats.co.uk{
url _for ("api.fetch _results’, query_id=

180




query_id) }”

)

@bp.route (”/get/<string:query_id>")
def fetch_results(query_id):

task_id = request.args.get(”task_id”, None)
if task_id is not None:

task = analyse_task.AsyncResult(task_id)

if task.state = "PENDING” :
return {
Pstatus”: task.state

}

else:
query_id = task.wait ()
with current_app.app_context ():

result = current_app.mongo_db.cache.
find_one ({” -id”: query.id})
return {
"status”: task.state,
"result”: result

}

else:

with current_app.app_context():
result = current_app.mongo_db.cache.
find_one ({” -id”: query_id})
if result is not None:

return {
"status”: "SUCCESS” ,
"result”: result
}
else:
return {

7status”: "FAILED”
}

@bp.route (”/search/<string:query>")
def search_area(query):

181




@bp
def

query = urllib.parse.unquote(query).upper ()
query_filter = request.args.get(” filter”, None)

sql_query = search_area_funcs.generate_sql_query (
query , query_filter=query_filter)

if sql_query = 7"
return " Failed-to-generate-query”, 500

with current_app.app_context():

cur = current_app.sql_db.cursor ()
cur.execute (sql_query)
results: List[Tuple[str,str]] = cur.fetchall ()

if len(results) > 0:
sorted_res = search_area_funcs.sort_results(
results)
return jsonify (
results=sorted_res ,
found=True
)
else:
return jsonify (
results=None,
found=False

)

.route (”/find/<string:postcode>")

search _houses (postcode):
sql_query = 7"77SELECT h.type, h.paon, h.saon, h.
postcode , p.street, p.town, p.county
FROM postcodes AS p
INNER JOIN houses AS h ON p.
postcode = h.postcode AND p.
postcode = %s;”"”
with current_app.app_context():
cur = current_app.sql_db.cursor ()
cur.execute (sql_query , (postcode.upper(),))

182




@bp.

def

results: List[Tuple[str,str str, str, str str|| =
cur. fetchall ()
results = sorted(list (set(results)), key=lambda x:
x[1])
if results != []:
return jsonify (
results=results ,
)

else:
return abort (404, ”Cannot-Find-Houses- for -
Postcode”)
route (" /find/<string:postcode>/<path:house>")

get_house_saon (postcode , house):
try:
paon, saon = house.split(”/”)
except ValueError:
paon = house
saon = "7
sql_house_query = "77’SELECT h.houseid, h.type, h.

paon, h.saon, h.postcode, p.street, p.town
FROM postcodes AS p
INNER JOIN houses AS h ON p.
postcode = h.postcode AND p.
postcode = %s
WHERE h.paon = %s AND h.saon = %s;
sql_sales_query = 77"SELECT +
FROM sales
WHERE houseid = %s
ORDER BY date DESC;”””
with current_app.app_context():
cur = current_app.sql_db.cursor ()
cur.execute (sql_house_query , (postcode.upper(),
paon.upper () ,saon.upper(),)) # Gets house
house: List [Tuple] = cur.fetchone ()
if house != []:

183




cur.execute (sql_sales_query , (house[0],)) #
gets all sales for the house

sales = cur.fetchall ()

house_info = {
"paon”: house[2],
"saon”: house[3],
"postcode”: house[4],
7street”: house[5],
"town” : house[6],
"type”: house[l],
"sales”: sales

}
house_info [?epc_cert”]| = epc_cert.GetEPC() .
run ( postcode , paon, saon)
return jsonify (house_info)
else:

return abort (404, ”"No-House-Found”)

@bp.route (" /overview”)
def overview():
with current_app.app_context():
data = current_app.mongo_db.cache.find_one ({”
~id”: "OVERVIEW” })
cur = current_app.sql_db.cursor ()
cur . execute ("SELECT - data -FROM- settings -WHERE-
name-=-'last_aggregated_counties ")
last_update = cur.fetchone ()
if data is not None:
if datetime.fromtimestamp (float (last_update
[0])) < data[”last_updated”]:
return data

else:
data = country.get_overview (current_app
)
data[” _.id” ] = "OVERVIEW”

data[”last_updated”] = datetime.now ()
current_app .mongo_db.cache. delete_one ({

7 _id”: "OVERVIEW" })

184




@bp.

def

@bp.

def

def

current_app .mongo_db.cache.insert_one (

data)
else:
data = country.get_overview (current_app)
data[” _id” ] = "OVERVIEW”
data[”last _updated”] = datetime.now ()

current_app .mongo_db.cache.insert_one (data)
return data

route (" /value/calc/<string:houseid>")
value_house (houseid: str):
task = valuation_task.delay (houseid)
return jsonify (
status="ok” ,
task_id="/value/get/” + task.id,

)

route (" /value/get/<string:job_id>")
get_value(job_id: str):
if job_id is not None:

task = analyse_task.AsyncResult(job_id)

if task.state = "PENDING” :
return {
"status”: task.state
¥
else:
valuations = task.wait ()
return {
"valuations”: valuations ,
"status”: 7ok”

}

get_last_updated () :

cur = current_app.sql_db.cursor ()

cur . execute ("SELECT - % -FROM- settings -WHERE-name -=-’
last _updated ’;”)

last _updated = cur.fetchone ()

if last_updated = None:

185




return datetime.fromtimestamp (0)
else:
if last_updated[1] is not None:
return datetime.fromtimestamp (float (
last _updated [1]))
else:
return datetime.fromtimestamp (0)

5.4.5 epc_cert.py

from typing import Tuple

import requests

from bs4 import BeautifulSoup
from config import Config

from pymongo import MongoClient

class GetEPC() :
def __init__(self) — None:

config = Config()

self . _mongo_db = MongoClient ({”mongodb://{
config .MONGOUSER}:{ config .MONGOPASSWORD}G{
config .MONGOHOST}:27017 /7 authSource=
house_data”)

self . _mongo = self._mongo_db.house_data

def _get_houses(self, postcode: str) —> str:
url_postcode = "+” . join (postcode.split (”-"))
resp = requests.get (f”https://find—energy—
certificate.service.gov.uk/find—a—
certificate /search—by—postcode?postcode={
url_postcode}”)

house_soup = BeautifulSoup (resp.content.decode(
"UTF-8”), ’html.parser’)
house_tags = house_soup.select ("#main—content ->

-div->-div->-table->-tbody ->-tr”)

186




houses = []
for house in house_tags:

properties = house.find (name="th”).find (”a”
)
address = properties.contents [0] \
.replace (”\n”, 77) \
cstrip () 0\
Ssplit (7,7 [0]
.upper ()
cert = properties|[” href”]

houses.append ((address, cert))
return houses

def get_cert(self, path: str):
resp = requests.get(f”https://find—energy—
certificate.service.gov.uk{path}”)

cert_soup = BeautifulSoup (resp.content.decode(”
UTF-8”), ’html.parser’)
sqr-m = cert_soup.select_one ("#main—content ->-

div->-div.govuk—grid —column—two—thirds .epc—
domestic—sections ->-div.govuk—body.epc—blue—
bottom . printable—area.epc—box—container ->-dl
->-div:nth—child (2)->-dd”) \

.contents [0] \

.replace(”\n?” 7)7’) \
.replace (”square-metres” | 77) \
.strip ()
sqr-m = int(sqr.m)
energy_rating = cert_soup.select_one ("#main—

content ->-div->-div.govuk—grid —column—two—
thirds .epc—domestic—sections ->-div.govuk—
body.epc—blue—bottom. printable —area .epc—
rating—graph—section ->-svg->-svg.rating —
current ->-text.current—potential —number”) \

.contents [0] \

.replace(”|”, 77) \

.strip ()

187




energy _rating = int(energy_rating)
return (sqr.m, energy_rating)

def run(self, postcode: str, paon: str, saon: str):

houses = self. _get_houses(postcode)
if saon != "7:

house_id = f”{saon}-{paon}” .upper ()
else:

house_id = paon.upper ()
try:
house = list (filter (lambda x: x[0] =
house_id , houses)) [0]
except IndexError:

return {
"sqr_m” : None,
"energy_rating”: None,
"cert_id”: None

}

cert_stats = self.get_cert (house[l])
self. _insert_data(cert_stats , house[l],
postcode, paon, saon)

return {
7sqrom”: cert_stats [0],
“energy_rating”: cert_stats[1],
"cert_id”: house[1]

}

def _insert_data(self, cert_stats: Tuple[int , int],
cert_id: str, postcode: str, paon: str, saon:

str ) :
epc_doc = self. mongo.epc_certs.find_one({”_id”
t”{paon}{saon}{postcode}” })

doc = {
7 _id”: f”{paon}{saon}{postcode}”,
7sqrom”: cert_stats [0],
"energy_rating”: cert_stats[1],
“cert_id”: cert_id

188




}

if epc_doc is None:

self . _mongo.epc_certs.insert_one (doc)
elif epc_doc != doc:

self . _mongo.epc_certs.update_one (

{777id77: dOC[”,id”]},

{7 $set”: {
"sqrom”: cert_stats [0],
“energy_rating”: cert_stats[1],
"cert_id”: cert_id

1

if __name__ — 7 __main__":
cert = GetEPC()
cert .run(”CHZ’lD ” 7 7167 7 7777)

5.4.6 search_area_funcs.py

import urllib.parse

def generate_sql_query (query: str, query_filter: str
None) :

if query_filter is not None:

if query_filter in [”postcode”, "street”, "town
7, 7district”, "county”, "outcode”, "area”,
"sector” |:

sql_query = {77"SELECT area, area_type
FROM areas WHERE substr (area,
1, 50)
LIKE ’{query}%’ AND area_type =
{query_filter}’
ORDER BY char_length (area)

LIMIT 10;77”
else:

189




N

return
else:
sql_query = {77”SELECT area, area_type
FROM areas WHERE substr(area, 1, 50)
LIKE “{query}%’
ORDER BY char_length (area)
LIMIT 10;77”
return sql_query

def sort_results(results):
SORT.ORDER = {”area”: 0, "outcode”: 1, "sector”: 2,

"postcode”: 3, "town”: 4, "county”: 5, 7
district”: 6, "street”: T}
return_list = []
for area in results:
if area[l] mnot in [”postcode” ,”outcode” ,” sector
77777area77]:

return_list .append ((area[0]. title (), area
[1]. title ()))
else:
return_list .append((area[0], area[l]. title
()))
return_list.sort (key=lambda val: SORT.ORDER|[val[1].
lower () ])
return return_list

5.4.7 country.py

from flask import current_app

def get_overview (current_app: current_app):
query = |

{
"$match’: |
"area_type ’: AREA’
}

b A

190




"$project 7: {
’3_month_perc’: {

"$avg ' {
"$slice ’: |
"$stats . percentage_change.
all .perc_change’, —3, 3
]
}
}
}
b A
"$sort T {
"3_month _perc’: —1
}
b A
"$limit ': 5
}
]
top_b_towns = current_app.mongo_db.cache.aggregate (
query)
query [2][” $sort” |[”3 _month_perc”| =1
bottom_5_towns = current_app.mongo_db.cache.
aggregate (query)
country_data = current_app.mongo_db.cache.find _one
({” -id”: "ALLCOUNTRY” })
return_data = country_data[”stats”]
return_data [”timings” ] = country_data|” timings” ]
return_data[” top_five”] = list (top_5_towns)
return_data[” bottom_five” ] = list (bottom_5_towns)

return return_data

5.4.8 Dockerfile

FROM python:3.10.8s

WORKDIR /app

191



COPY ./requirements.txt ./
RUN python3 —m pip install —upgrade pip setuptools
wheel

RUN python3 —m pip install —r requirements.txt

COPY ./ web

CMD [”gunicorn”, "—w-4"  "~b-0.0.0.0:8000”, "run:app”]

5.4.9 requirements.txt

amqp==5.1.1
async—timeout ==4.0.2
beautifulsoup4==4.11.2
billiard ==3.6.4.0
blinker==1.5
celery==5.2.7
certifi==2022.12.7
charset —normalizer==3.0.1
click==8.1.3

click —didyoumean==0.3.0
click —plugins==1.1.1
click—repl==0.2.0
dnspython==2.3.0
Flask==2.2.2
Flask—Cors==3.0.10
gunicorn==20.1.0
idna==3.4
importlib—metadata==6.0.0
itsdangerous==2.1.2
Jinja2==3.1.2
kombu==5.2.4
Ixml==4.9.2
MarkupSafe==2.1.2
polars==0.16.1
prompt—toolkit==3.0.36

192




psycopg2==2.9.5
pymongo==4.3.3
python—dateutil==2.8.2
python—dotenv==0.21.1
pytz==2022.7.1
redis==4.4.2
requests==2.28.2
sentry—sdk==1.14.0
six==1.16.0
soupsieve==2.3.2.post1
typing_extensions==4.4.0
urllib3==1.26.14
vine==5.0.0
wewidth==0.2.6
Werkzeug==2.2.2
zipp==3.12.0

5.5 Website

5.5.1 app.html

<!DOCTYPE html>
<html lang="en”>

<head>
<meta charset="utf-8" />
<link rel="icon” href="%sveltekit .
assets%/favicon.png” />
<meta name="viewport” content="width=
device—width ,-initial —scale=1,-
maximum—scale=1">
<meta name="description” content="View,
-analyse-and-compare-property -data-
from- all -over - England -and - Wales”>
%sveltekit . head%
</head>

193




<body data—sveltekit —preload —data="hover”>
<div style="display:-contents”>%
sveltekit .body%</div>
</body>
</html>

5.5.2 app.css

@tailwind base;
@tailwind components;
@tailwind utilities;

5.5.3 +routes.svelte

<script lang="ts >

import QuickStat from ”$lib/components/
QuickStat.svelte”;

import Badge from ” $lib/components/Badge.svelte

import PieChart from ”$lib/components/PieChart.
svelte” ;

import LineGraph from ” $lib/components/
LineGraph.svelte”;

import BarChart from ”$lib/components/BarChart.
svelte”;

export let data;
console.log(data);
let quick_stats = data.quick_stats;
let current_month = new Date(data.average_price
.dates.slice(—1)[0] );
let last_updated = new Date(data.last_updated);
let timings = data.timings;

function toTitleCase(str: string) {

194




return str.toLowerCase().split(’ 7).map(
function (word) {
return (word.charAt(0).toUpperCase() + word
.slice(1));
p)join (7 7);

let perc_change = {
type: ["D”,"F” )7S” 7T” 7all”],
perc: [data.percentage_change.S.perc_change,
data.percentage_change.F.perc_change ,data.
percentage_change .T. perc_change ,data.
percentage_change .D. perc_change ,data.
percentage_change. all.perc_change],
date: data.percentage_change. all.date
};
</script>
<svelte :head>
<title>House Stats | Home</title>
</svelte :head>

<div class="h—5/6">
<div class="m-2">
<div class="items—center-align—middle- flex - flex
—initial - flex —wrap”>
<p class="inline —block-text —2x]-m—2-align—
middle”>England & Wales, {current_month.
toLocaleString (’default ’, { month: ’long
" 1)} {current_month.getFullYear () }</p>
<Badge
text="Last - Updated - {last_updated .
toLocaleDateString () }”
colour="green”
classes="inline —block-align —middle”
/>
<Badge
text="Execution - Time- {Number (( timings .
aggregate).toFixed (3))}s”

195




colour="green”
classes="inline —block-align —middle”
/>
<Badge
text="Current -Month-{current_month.
toLocaleDateString () }”
colour="green”
classes="inline —block-align —middle”

/>

</div>

</div>

<div class="grid-lg:grid—cols —4-md: grid—cols —2-grid
—cols —1-gap—4-h—full -m-2">
<QuickStat

/>

value={quick_stats.average_price}

using _percentage={true}
percentage={quick_stats.average_change}
title="Average-House- Price”
colour="red”

<QuickStat

/>

value={quick _stats.sales_qty}
currency={false}

using_percentage={true}
percentage={quick_stats.sales_qty_change}
title="Sales -Volume”

colour="purple”

<QuickStat

/>

value={quick_stats.sales_volume}

using_percentage={true}

percentage={quick_stats.sales_volume_change
}

title="Price-Volume”

colour="green”

<QuickStat

value={quick_stats.expensive_sale}

196




using _percentage={false}
title="Most - Expensive - House”
colour="pink”
/>
<div class="row—span—2-md: col —span—2-bg
—white -p—4-rounded”>
<p class="text—lg -ml—2">Top 5 Areas</p>
<div class="relative -overflow—=x—auto”>
<table class="w-full -text-sm-text—left -
text—gray —500-dark: text—gray —400">
<thead class="text—xs-text—gray—700
-uppercase -bg—gray —50-dark : bg—
gray —700-dark: text —gray —400">

<tr>
<th scope="col” class="px—6
-py—3">
Postcode Areas
</th>
<th scope="col” class="px—6
“py—3">
3m Moving Average
Percentage
</th>
</tr>
</thead>
<tbody>

{#each data.top_five as town}
<tr class="bg—white-border—
b-dark:bg—gray —800-dark:
border—gray —700">
<th scope="row” class="
px—6-py—4-font—
medium - text —gray —900
-whitespace—nowrap -
dark:text—white”>
<a href={"/analyse/
area/” + town.

_id . split (7AREA”

197




) [0] }>{town. _id .
split ("AREA” )
[0].toUpperCase
() }</a>
</th>
<td class="px—6-py—4">
{Number ((town |[”3
_month_perc”]) .
toFixed (3))}%
</td>
</tr>
{/each}
</tbody>
</table>
</div>
</div>
<div class="row—span—2-md: col—span—2-bg
—white -p—4-rounded”>
<p class="text—lg -ml-2">Bottom 5 Areas</p>
<div class="relative-overflow—=x—auto”>
<table class="w—full-text-—sm-text—left -
text —gray —500-dark : text —gray —4007>
<thead class="text—xs-text—gray—700
-uppercase -bg—gray —50-dark : bg—
gray —700-dark: text —gray —4007>

<tr>
<th scope="col” class="px—6
“py—3">
Postcode Areas
</th>
<th scope="col” class="px—6
“py—3">
3m Moving Average
Percentage
</th>
</tr>
</thead>
<tbody>

198




{#each data.bottom _five as town
}
<tr class="bg—white-border—
b-dark:bg—gray —800-dark:
border—gray —700">
<th scope="row” class="
px—6-py—4-font—
medium - text —gray —900
-whitespace—nowrap -
dark:text—white”>
<a href={"/analyse/
area/” + town.
-id . split ("AREA”
) [0] }>{town. _id.
split ("AREA” )
[0]. toUpperCase
() }</a>
</th>
<td class="px—6-py—4">
{Number ((town[”3
_month_perc”]) .
toFixed (3))}%
</td>
</tr>
{/each}
</tbody>
</table>
</div>
</div>
<div class="xl:row—span—2">
<PieChart title="Property-Types” labels={
data.type_proportions.type} data={data.
type_proportions.count}/>
</div>
<div class="md: col—span—2-row—span—2">
<LineGraph title="Monthly-Average-Price”
labels={data. average _price.type} data={
data.average_price.prices} dates={data.

199




average _price.dates}/>
</div>
<div class="-md: col—span—2-row—span—2">
<BarChart title="Percentage-Change” labels
={perc_change .type} data={perc_change.
perc} dates={perc_change.date}/>
</div>
<div class="-md: col—span—2-row—span—2">
<BarChart title="Sales-Volume” labels={data
.monthly_qty.type} data={data.
monthly _qty.qty} dates={data.monthly_qty
.dates}/>
</div>
<div class="md: col—span—2-row—span—2">
<BarChart title="Price-Volume” labels={data
.monthly _volume.type} data={data.
monthly_volume.volume} dates={data.
monthly_volume. dates}/>
</div>
</div>
</div>

5.5.4 +layout.svelte

<script>
import Menu from ” $lib/components/menu.svelte” ;
import Loader from ” $lib/components/Loader.

svelte”;

import { navigating } from ’$app/stores ’;
import 7 ../app.css”;
import ”flowbite/dist/flowbite.css”;
import * as Sentry from ”@sentry/svelte”;
import { BrowserTracing } from ”@sentry/tracing

”
)

import { dev } from ’$app/environment ’;
let current_year = new Date().getFullYear();

200




</script>

<style lang="postcss”>
:global (html) {
background—color: theme(colors.slate
.200) ;
}

</style>

<div class="flex-flex—col -min—h—-screen-justify —between”
>
<div class="inline”>
<Menu>< /Menu>
</div>
{#if $navigating}
<div class="flex -justify —center-items—
center -my—52">
<Loader></Loader>
</div>
{:else}
<slot />
[/if)

<footer class="bg—green —800-text—sm-text—white-
text —center -inset —x—0-bottom—0-p—2">
&copy; {current_year} <a href="https://github
.com/emteel4”>Morgan Thomas</a> | <a href=
"mailto:contact@housestats.co.uk”>
contact@housestats.co.uk</a> | <a href="/
tos”>Terms of Use</a> | <a href="/pp’>
Privacy Policy</a> <br>
Contains HM Land Registry data Crown
copyright and database right 2021. This
data is licensed under the Open Government
Licence v3.0.
</footer>

201




‘</div>

5.5.5 +page.ts

import { error } from ’@sveltejs/kit ’;
import type { PageLoad } from ’'./S$types’;

export const load = (async ({ params, fetch }) = {
const response = await fetch ( https://api.
housestats.co.uk/api/vl/overview ") ;
const data = await response.json ();
if (response.status = 200) {
return data
} else {
throw error (400, ’Unable to load main
dashboard new data is being added’) ;

}
satisfies PagelLoad;
1) g

5.5.6 +error.svelte

<script>
import { page } from ’$app/stores ’;
</script>

<div class="flex-h—screen-justify —center-items—center”>
<div class="text—center”>
<p class="text—2x1">{$page.error.message}</p>
<p class="text—lg”>This site is still under
development so some features may be missing<

/P>
</div>

</div>

202



5.5.7 analyse/+page.svelte

<script lang="ts”">

/*% Qtype {import(’./$types’).PageData} x/

import Badge from ’$lib/components/Badge.svelte ’;

import QuickStat from ’$lib/components/QuickStat.
svelte ’;

import PieChart from ’$lib/components/PieChart.
svelte ’;

import LineGraph from ’$lib/components/LineGraph.
svelte 7;

import BarChart from ’$lib/components/BarChart.

b

svelte ’;

let quick_stats, stats, results, timings,
perc_change;

let last_updated: Date;

let current_month: Date;

let area: string;

export let data;

if (data.status = "SUCCESS”) {
quick_stats = data.result.stats.quick_stats;
stats = data.result.stats;
results = data.result;
timings = results.timings;
last _updated = new Date(results.last_updated);
current_month = new Date(quick_stats.

current_month) ;

perc_change = {
type [77877 ’77F77 ’77T77 ’77D77 ’77 all??] ,
perc: [stats.percentage_change.S.

perc_change ,stats.percentage_change.F.
perc_change ,stats.percentage_change.T.
perc_change ,stats.percentage_change.D.
perc_change ,stats.percentage_change. all.

203




perc_change] ,
date: stats.percentage_change. all.date

}s

let postcodes = ["POSTCODE” ,”AREA” ,”SECTOR” ,”
OUTCODE” |
if (!postcodes.includes(results.area_type)){
area = toTitleCase(results.area);
} else {
area = results.area;

}
}

let title = 7 Analyse”;

function toTitleCase(str: string) {
return str.toLowerCase().split(’ 7).map(
function (word) {
return (word.charAt(0).toUpperCase() + word
.slice(1));
p)join (7 7);
}

</script>

<svelte :head>
<title>House Stats | {title}</title>
</svelte :head>

<div class="h—5/6">
<div class="m-2">
<div class="items—center-align—middle-flex - flex

—initial - flex —wrap”>

<p class="inline —block-text —2xl-m-2-align—
middle”>{area} ({toTitleCase(results.
area_type)}) {current_month.
toLocaleString (’default ’, { month: ’long

204




" })} {current_month.getFullYear () }</p>
<Badge
text="Last - Updated - {last_updated .
toLocaleDateString () }”
colour="green”
classes="inline —block-align-—middle”
/>
<Badge
text="Execution - Time- {Number (( timings .
aggregate).toFixed (3))}s”
colour="green”
classes="inline —block -align —middle”
/>
<Badge
text="Data-Fetch-Time- {Number ((timings .
loader).toFixed(3))}s”
colour="green”
classes="inline —block-align —middle”
/>
<Badge
text="Current -Month-{current_month .
toLocaleDateString () }”
colour="green”
classes="inline —block-align —middle”

/>

</div>

</div>

<div class="grid-lg:grid—cols —4-md: grid—cols —2-grid
—cols —1-gap—4-h—full -m-2">
<QuickStat

/>

value={quick_stats.average_price}

using _percentage={true}
percentage={quick_stats.average_change}
title="Average-House- Price”
colour="red”

<QuickStat

value={quick_stats.sales_qty}

205




currency={false}
using _percentage={true}
percentage={quick_stats.sales_qty_change}
title="Sales-Volume”
colour="purple”
/>
<QuickStat
value={quick_stats.sales_volume}
using_percentage={true}
percentage={quick_stats.sales_volume_change
}
title="Sales-Price-Volume”
colour="green”
/>
<QuickStat
value={quick _stats.expensive_sale}
using_percentage={false}
title="Most - Expensive - House”
colour="pink”
/>
<div class="xl:row—span—2">
<PieChart title="Property-Types” labels={
stats.type_proportions.type} data={stats
.type_proportions.count}/>
</div>
<div class="md: col—span—2-row—span—2">
<LineGraph title="Monthly-Average-Price”
labels={stats.average_price.type} data={
stats.average_price.prices} dates={stats
.average_price.dates}/>
</div>
<div class="-md: col—span—2-row—span—2">
<BarChart title="Percentage-Change” labels
={perc_change .type} data={perc_change.
perc} dates={perc_change.date}/>
</div>
<div class="-md: col—span—2-row—span—2">

206




<BarChart title="Sales-Volume” labels={
stats.monthly_qty.type} data={stats.
monthly_qty.qty} dates={stats.
monthly_qty . dates}/>
</div>
<div class="md: col—span—2-row—span—2">
<BarChart title="Price-Volume” labels={
stats . monthly volume.type} data={stats.
monthly_volume.volume} dates={stats.
monthly_volume. dates }/>
</div>
</div>
</div>

5.5.8 +page.svelte

import { error } from ’@sveltejs/kit ’;

/*% Qtype {import(’./$types’).PageLoad} x*/
export async function load({ fetch, params }) {

const sleep = (ms: number) => new Promise((r)
=> setTimeout(r, ms));

let area: string = params.area;

let area_type: string = params.area_type;

let stats;

let counter = 0

const response = await fetch (’https://api.
housestats.co.uk/api/vl/analyse/’  +
area_type + '/’ + area);
const data = await response.json ();
if (data.status == "ok”) {
while (true) {
const res_resp = await fetch(
data.result);
stats = await res_resp.json();

207




if (stats.status = ”"SUCCESS” || stats.

status = "COMPLETED” ) {
break

} else if (counter > 60x4) {
throw error (500,
Connection Timed Out

)
}
counter-4+4;
await sleep (250)

}
} else {

throw error (500, ’An Error Has Occured
7) 7
}
return stats
}
5.5.9 compoents/Badge.svelte
<script lang="ts”>
export let text: string;
export let colour: string;
export let size: string = "xs”;
export let classes: string;
</script>
<span class="bg—{colour}—100-text—{colour}—800-text —{
size }-font—medium-m-1-px—2.5-py—0.5-rounded-{classes

}’>{text }</span>

5.5.10 BarChart.svelte

<script lang="ts”">
import Chart from ’chart.js/auto’;

import zoomPlugin from ’chartjs—plugin—zoom ’;

208




import { onMount } from ’svelte ’;

I

import ’chartjs—adapter—date—fns ’;

import {enGB} from ’date—fns/locale ’;
Chart.register (zoomPlugin) ;

let graph_id = Math.random () .toString(36).substr (2,
5)

let house_types: { [key: string]: string } = {
'D’: 7 Detatched” ,
'S’ 7Semi—Detatched”
"T’: ”"Terrace” ,
Fr U Flat”,
'O’: 7Other’
Tall” s 7 ALLY

let colours = |
'4dc2626
"#9333ea’
'#16a34a
H#dAb277T°

]

export let labels: Array<string>;
export let title: string;

export let data: Array<Array<Biglnt>>;
export let dates: Array<string>;

let data_length = data.length;

let datasets = [];

for (let i = 0; i < data_length; i++){

datasets.push ({

label: house_types|[labels[i]],
data: data[i],
tension: 0.1,
backgroundColor: colours|[i],
fill : false ,

209




}

const chart_data = {
labels: dates.map((x) => {return new Date(x)}),
datasets: datasets

}s

const config = {
responsive: true,
type: ’bar’,
data: chart_data ,
options: {

scales: {

x: A

stacked: true,

type: ’time’,
time: {
round: ’‘month’,
minUnit: ’month’
} 9
adapters: {
date: {

locale: enGB
}

stacked: true

}
}7
plugins: {
zoom: {
pan: {
enabled: true
}7

zoom: {
wheel: {

enabled: true,
},

pinch: {

210




enabled: true

} ’ Y

mode: ’'xy’,

}
I

title: {
display: true,
text: title

}
Iz
let line_chart: Chart;
onMount (()=> {
let ctx = document.getElementByld (graph_id);
if (ctx != null){
line_chart = new Chart(ctx, config);
}
1)

</script>

<canvas id={graph_id}>

</canvas>

<button on:click={line_chart .resetZoom (’default )} type
="button” class="text—white-bg—green —700-hover:bg—
green —800-focus: outline—mone-focus:ring—4-focus:ring
—green —300- font —medium - rounded—full - text —sm-px—5-py
—2.5-text—center -mr—2-mb—2-dark : bg—green —600-dark:
hover:bg—green —700-dark: focus:ring—green —800”>Reset
Zoom< /button>

5.5.11 LineGraph.svelte

<script lang="ts”">
import Chart from ’chart.js/auto’;
import zoomPlugin from ’chartjs—plugin-zoom’;

import { onMount } from ’svelte ’;

211




’.
)

import ’chartjs—adapter—date—fns

import {enGB} from ’date—fns/locale ’;

Chart.register (zoomPlugin) ;

let graph_id = Math.random().toString (36).substr (2,
5)

let house_types: { [key: string]: string } = {
'D’: 7" Detatched” ,
'S’ 7Semi—Detatched”
"T’: 7"Terrace” ,
'F’: 7?Flat”
'O’: "Other’,
Tall”: ALY

let colours = |
'4.dc2626 7
"#9333ea’
"#16a34a’,
"HAb277T

]

export let labels: Array<string>;
export let title: string;

export let data: Array<Array<Biglnt>>;
export let dates: Array<string>;

let data_length = data.length;
let datasets = [];
for (let i = 0; i < data_length; i++){
let label: string;
if (labels[i].length < 4){
label = house_types|[labels[i]];
} else {
label = (new Date(labels[i])).
toLocaleDateString () ;

}

datasets.push({

212




label: label,
data: datai],
tension: 0.1,

borderColor: colours[i],
fill : false ,

P
}

const chart_data = {

labels: dates.map((x) => {return new Date(x)}),
datasets: datasets
}s
const config = {
responsive: true,
type: ’line ’,
data: chart_data ,
options: {
scales: {

x: A

type: ’time’,
time: {
round: ’‘month’,
minUnit: ’'month’
} 9
adapters: {
date: {

locale: enGB

}

}
}
plugins: {
zoom: {
pan: {
enabled: true
I

zoom: {
wheel: {
enabled: true,

213




I,

pinch: {
enabled: true

},

. )
mode: ’'xy’,

¥

}s

title: {
display: true,
text: title

}
} )

elements: {
point :{
radius: 0
}

}
¥
let line_chart: Chart;
onMount (()=> {
let ctx = document.getElementByld (graph_id);
if (ctx != null){
line_chart = new Chart(ctx, config);
}
1)

</script>

<canvas id={graph_id}>

</canvas>

<button on:click={line_chart .resetZoom (’default ’)} type
="button” class="text—white-bg—green —700-hover:hbg—
green —800-focus: outline—mone-focus:ring—4-focus:ring
—green —300 - font —medium - rounded—full - text —sm- px—5-py
—2.5-text—center -mr—2-mb—2-dark:bg—green —600-dark:
hover:bg—green —700-dark: focus:ring—green —800”">Reset
Zoom< /button>

214



5.5.12 Loader.svelte

<style>

.loader {
border: 16px solid #f3f3f3;
border—radius: 50%;
border—top: 16px solid #046C4E;
width: 120px;
height: 120px;
—webkit—animation: spin 2s linear

infinite; /x Safari x/

animation: spin 2s linear infinite;

}

@-webkit—keyframes spin {
0% { —webkit—transform: rotate(Odeg); }
100% { —webkit—transform: rotate(360deg

)i}

}

@keyframes spin {
0% { transform: rotate(Odeg); }
100% { transform: rotate(360deg); }

¥

</style>

<div class="loader”></div>

5.5.13 menu.svelte

<script lang="ts”">
import { page } from ’Sapp/stores ’;
import { Navbar, NavBrand, NavLi, NavUl,
NavHamburger, Button, Input } from ’flowbite—
svelte ’

$: current_page = $page.url.pathname;
let suggestions: Array<Array<[string ,h string]|>> =

[];

215




let isFocused = false;

const onSearchFocus =()=> isFocused=true;

const onSearchBlur = () => setTimeout (() = {
isFocused=false; }, 250);

let results: boolean = false;

async function autoComplete(search_value: string){
if (search_value) {
const response = await fetch (’https://api.
housestats.co.uk/api/vl/search/’ +
search_value);

const data = await response.json ();

if (data.found = true){
suggestions = data.results;
results = true;

} else {
results = false;

}
} else {

results = false;
}
}

</script>

<Navbar let:toggle let:hidden>
<NavBrand href="/">
<img src="/logo.svg” class="h—15-mr—3-sm:h—9”
alt="House- Stats -Logo” />
<span class="self—center-whitespace-—nowrap-text
—x1-font—semibold -dark: text—white”>
House Stats
</span>
</NavBrand>
<div class="flex -md: order —2">
<Button color="none” data—collapse—toggle="
mobile-—menu—3” aria—controls="mobile—menu—3”

216




aria—expanded="false” class="md: hidden -text
—gray —500-dark : text —gray —400- hover : bg—gray
—100-dark : hover :bg—gray —700- focus : outline —
none - focus:ring—4-focus:ring—gray —200-dark:
focus:ring—gray —700-rounded—lg - text—sm-p—2.5
-mr—17 >
<svg xmlns="http://www.w3.o0rg/2000/svg”
fill="none” viewBox="0-0-24-24" stroke—
width="1.5" stroke="currentColor” class=
"w—6-h—6-dark:text—white”><path stroke—
linecap="round” stroke—linejoin="round”
d="M21-211-5.197—-5.197m0-0A7.5-7.5-0-
105.196-5.196a7.5-7.5-0-0010.607-10.607z
T ></svg>
</Button>
<div class="hidden-relative -md: block”>
<div class="flex-absolute-inset—y—0-left —0-
items—center -pl—3-pointer —events—mone”>
<svg xmlns="http://www.w3.o0rg/2000/svg”
fill="none” viewBox="0-0-24-24"
stroke—width="1.5" stroke="
currentColor” class="w—6-h—6-dark:
text—white”’><path stroke—linecap="
round” stroke—linejoin="round” d="
M21-211—-5.197—-5.197m0-0A7.5-7.5-0-
105.196-5.196a7.5-7.5-0-0010.607 -
10.607z" /></svg>
</div>
<input
type="text”
id="search-—navbar”
autocomplete=" off”
class="block-w—full -p—2-pl—10-text-—sm-
text—gray —900- border -border—gray —300
-rounded—Ilg -bg—gray —50-focus : ring—
blue —500- focus : border—blue —500-dark:
bg—gray —700-dark : border—gray —600 -
dark: placeholder —gray —400-dark: text—

217



white -dark: focus:ring—blue —500-dark:
focus:border—blue —500"
placeholder="Search-Areas...”
on:input={e => autoComplete(e.target.
value)}
on: focus={onSearchFocus}
on: blur={onSearchBlur}>
<div class="absolute”>
{#if isFocused true}
<div class="relative -bg—white-w—96"
>
{#if results = true}
{#each suggestions as
suggestion}
<a href="/analyse/{
suggestion [1]}/{
suggestion [0] }”
class="pl—2-hover:bg
—gray —300-block”>
{suggestion [0]}
<span class="bg—
blue —100-text —
blue —800- text —xs
- font —medium - mr
—2-px—2.5-py—0.5
-rounded”>{
suggestion [1]}</
span>

</a>
{/each}
{:else}
<p class="ml-2">No Results<
/p>
{/if}
</div>
{/if}
</div>
</div>

218




<NavHamburger on:click={toggle} />
</div>
<NavUl {hidden }>
<NavLi href="/” active={current_page — " /" ?
true : false }>Dashboard</NavLi>
<NavLi href="/counties” active={current_page

== " /counties” 7?7 true : false}>Overview
Counties</NavLi>

<NavLi href="/valuation” active={current_page
—— 7 /valuation” ? true : false}>House
Lookup</NavLi>

<NavLi href="/reports” active={current_page ——
7/reports” 7 true : false}>Report
Generator</NavLi>
</NavUl>
</Navbar>

5.5.14 PieChart.svelte

<script lang="ts">
import Chart from ’chart.js/auto’;
import { onMount } from ’svelte ’;
let house_types: { [key: string]: string } = {
'D’: 7" Detatched” ,

'F’: " Flat”

'S’ 7Semi—Detatched”
"T’: ”"Terrace”

'O’ "Other’

¥

export let labels: Array<string>;
export let title: string;

export let data: Array<Biglnteger>;

const chart_data = {

219




labels: labels .map((x) => {return house_types|[x
1),
datasets: [{
label: title ,
data: data,
backgroundColor: |
"HAb27TT
2626
'#16a34a
"#9333ea’

I

hoverOffset: 4

s
};
const config = {
type: ’'pie’,
data: chart_data ,
options: {
plugins: {
title: {
display: true,
text: title
¥
¥
¥
b

onMount (()=> {
let ctx = document.getElementByld (’ piechart ’) ;
new Chart(ctx, config);

1)
</script>

<canvas id="piechart”>

</canvas>

220




5.5.15 QuickStat.svelte

<script lang="ts”">
let formatter = Intl.NumberFormat(’en’
{
notation: ’'compact’,
unitDisplay: ’long’,
style: ’currency ’,
currency: 'GBP’
)
export let value: GLfloat;
export let using_percentage: boolean = false;
export let percentage: GLfloat = 0;
export let title: string;

export let currency: boolean = true;
export let colour: string;
</script>

<div class="bg—{colour}—600-text—white-rounded-p—2-">
{#if currency}
<p class="text—2x]-font—extralight-inline”>{
formatter . format (value) }</p>
{:else}
<p class="text—2xl-font—extralight-inline”>{
value . toLocaleString () }</p>
{/if}

{#if using_percentage }
<p class="inline-font—thin-align—top”>{percentage <
0 7 >’ : <’} {Math.abs(percentage)}%</p>
{/1f}
<p class="text-sm-font—extralight”>{title }</p>
</div>

5.5.16 SearchBar.svelte

<script lang="ts >
export let filter: string;

221



let suggestions: Array<Array<[string ,h string]|>> =

[1;

let isFocused = false;

const onFocus =()=>isFocused=true;
const onBlur = () => setTimeout (() => { isFocused=
false; }, 250);

let results: boolean = false;

async function autoComplete(search_value: string)({
if (search_value) {
const response = await fetch ( https://api.
housestats.co.uk/api/vl/search/’ +
search_value + ’?filter="+ filter);

const data = await response.json();

if (data.found = true){
suggestions = data.results;
results = true;

} else {
results = false;

}
} else {

results = false;
}
}

function titleCase(str: string) {
return str.toLowerCase().split(’ 7).map(
function (word: string) {
return (word.charAt(0).toUpperCase() + word
.slice(1));
p)join (7 7);
}

</script>

222




<div class="flex-flex—col”>
<input type="text”
name="area”
class="p—3-rounded”
autocomplete=" off”
placeholder={"Search-” + titleCase(filter)}
on:input={e => autoComplete(e.target.value)}
on: focus={onFocus}
on: blur={onBlur}>
{#if isFocused true}
<div class="bg—white-absolute -mt—12-w—52-block”
>
{#if results = true}
{#each suggestions as suggestion}
<a href={’/valuation/’ + suggestion
[0]} class="pl—2-hover:bg—gray
—300-block”>
{suggestion [0]}
<span class="bg—blue—100-text—
blue —800- text—xs - font—medium
-mr—2-px—2.5-py—0.5-rounded”
>{suggestion [1]}</span>

</a>
{/each}
{:else}
<p class="ml-2">No Results</p>
{/if}
</div>
{/if}

</div>

5.5.17 valuation/+page.svelte

<script lang="ts >
import SearchBar from ’$lib/components/
SearchBar.svelte 7;

</script>

223




<svelte :head>
<title>House Stats | House Lookup</title>
</svelte :head>
<div class="flex -justify —center-items—center -max—w—
screen’>
<div class="-—mt—28">
<p class="text —3x1”">Enter Postcode
Below</p>
<SearchBar filter="postcode” />
</div>
</div>

5.5.18 valuation/[postcode]/+page.svelte

<script lang="ts >
import type { PageData } from ’'./S$types’;

export let data: PageData;
</script>

<div class="md:mx—24-my—8”">
<a href="/valuation” class="-bg—white-p—2-
rounded - text —blue —600">&1t ; Back</a>

<div class="relative-overflow-—x—auto-shadow-—md-

sm:rounded—lg”>

<table class="w-full -text-—sm-text—left -

text —gray —500-dark: text —gray —400">
<caption class="p-5-text—xI-

font —semibold-text—left - text
—gray —900-bg—white -dark : text

—white -dark : bg—gray —8007>
{data.postcode.
toUpperCase () }

<p class="mt—-1-text-—sm-

font—mnormal-text—

gray —500-dark: text—
gray —400”>A1l of the

224




houses with the
postcode {data.
postcode .toUpperCase
()}-</p>
</caption>
<thead class="text—xs-text—gray
—700-uppercase -bg—gray —50-
dark :bg—gray —700-dark: text—

gray —4007>
<tr>
<th scope="col”
class="px—6
-py—37"> SAON
, PAON </th>
<th scope="col”
class="px—6
“py—3">
Street </th>
<th scope="col”
class="px—6
-py—3"> Town
</th>
<th scope="col”
class="px—6
“py—3">
County </th>
<th scope="col”
class="px—6
“py—3">
Postcode </
th>
<th scope="col”
class="px—6
“py—3">
Action </th>
</tr>
</thead>
<tbody>

225




226

{#each data.data as

house}
<tr class="

white-border

—b-dark:
gray —900
dark: bor
gray —700

<th

bg—

bg—
der—
77>

scope

font

mediu

text
gray
—900

white

nowra,

dark

text

white
77>

space

p




227

</th>
<td
class

7

py—4

77>

house

(2134

house

house



228

</td>
<td
class

7

py—4
77>

</td>
<td
class

77>

</td>

house

(4]}

house

[5]}

house

(6]}

house

(3]}



229

<td

class

7

:pX

py—4
’7>

valuation

/4

data
postcode

toUpperCase

()
A

house

(113 /4

house

(2]}

W

font

medium

text

blue



</div>

</td>
</tr>
{/each}
</tbody>
</table>
</div>

5.5.19

valuation/[postcode]/+page.ts

import
import

export

{ error } from ’@sveltejs/kit ’;
type { PageLoad } from ’./S$types’;

const load = (async ({ params }) = {

let postcode: string = params.postcode;

const response = await fetch ( https://api.
housestats.co.uk/api/vl/find/’ + postcode.

230

—600

dark

text

blue
—500

hover

underline

7

>
View

<
/
a
>



toUpperCase () ) ;

const data = await response.json ();
if (response.status = 200) {
return {

data: data.results ,
postcode: postcode

}

} else {
throw error (404, 'No Postcode Found’);
}

}) satisfies Pageload;

231




