
House Stats
H446-03 NEA

Candidate Name - Morgan Rhys Thomas
Centre Name - Christleton High School

Candidate Number - 1185
Centre Number - 40329

June 2022

Contents

1

Chapter 1

Analysis

1.1 Problem Identification

Housing markets are a complex and convoluted system with hidden pat-
terns which are hard to visualise and discover without using complex and
expensive software. This means that investing in property is arduous for the
average person as compared to large property developers who have the funds
for this software and the economic know-how to make informed decisions.

Although house sales data is public there are few too many solutions
that let you visualise the data and analyse it. The best solution that exists
as of right now is provided by the Land Registry and is formatted in a
monthly report. These reports have very little analysis and only show how the
current month performed to the previous year’s month with basic statistical
operations performed and only focus on England & Wales.

1.2 Computational Methods

The main objective of my application can be broken down into lots of
smaller problems to be solved independently. This will make the application
a lot more feasible and efficient to programme rather than tackling it as one
monolithic problem. These smaller tasks will be:

• Store house data in a database

• Query that data via a programming language

2

• Process the data and apply statistical operations to it

• Present this data in a web interface for the user

The data required for this project is published by the Land Registry as
one large file and a monthly file containing amendments and additions to be
made to the original data. This will need to be queried so that statistical
operations can be performed on specific areas or time frames and amended
so that new data can be added to keep it as up-to-date as possible to provide
the best user experience. These queries will also need to be performed in a
sub-second time to provide the best experience which would not be possible
without a database running on a computer.

One problem that will be appropriate to be solved by computational
methods will be performing statistical operations on the data. A data pro-
cessing platform will be required as it will often be processing 100,000s if not
millions of data points. These calculations would not be able to be performed
manually as the sheer time it would take and would often be impossible to
be done via analogue methods. This will need to be performed in a minimal
amount of time to produce the best user experience which will in turn allow
the most up-to-date data to be used as it won’t need to be preprocessed and
instead can be processed upon request.

A data ingest system will also need to be done computationally as each
month 100,000s of new data points are released and will need to be added
efficiently to allow people to perform analysis on the most up-to-date data.
This will require parallel processing to optimise the process as otherwise, it
will take an inordinate amount of time to update the data. It will also require
validation of the data and will be most suited to a computational solution as
it requires a great deal of accuracy. If this were to be carried out by a human
there would be room for lots of error when inserting large amounts of data.

This will also require a graphical user interface to abstract the complex
calculations so that the user can view and understand the statistics derived
from the dataset. These will be large numbers and a lot of data that will
require graphics to show patterns and correlations. These would not suit a
text interface or outputting to a file as the users would not be able to make
full use of the results due to the unintuitive interface.

3

1.3 Stakeholders

The demographic this programme would be aimed at is real estate agents,
property developers, surveyors & solicitors. Another essential demographic
will be the average citizen who is looking into buying or selling a home. For
the average person, the programme will be able to provide a simple tool
which will be easy to navigate with limited functionality. Professionals will
have access to more advanced tools to allow them to perform more advanced
analyses. This will require the website to be intuitive to use as people in these
industries may not be as computer literate. It will also need to provide highly
accurate data as it will often be used in applications like house valuations,
legal proceedings & investment decisions.

Often individual property investors looking to flip houses will end up
looking on sites like Rightmove trying to find houses in their budget and
not taking into account any of the economic backgrounds of that area. This
can lead to poor investment decisions and end up with them losing a lot of
money. When compared to commercial investors these individuals do simply
not have the resources to put into analysing data themselves and investing
money into tools to view that data. My application will allow them to
analyse data and make decisions via intuitive graphs and a simple interface
for free. These scenarios will lend themselves to my application as they will
allow the average Joe to analyse residential areas simply and effectively. The
stakeholder for this demographic is Liam Carter who is experienced with
property investment to either flip or rent out.

Customers of real estate agents often just want an idea of their house
value to decide whether they want to sell it or not. Nowadays when valuing
a house you need to have surveyors come around to gather data and come
back after a prolonged period with a price. At this point, the customer
could have changed their mind or moved to a different realtor. With my
application, they’ll be able to get back to the customer within a few minutes
with a rough estimate of a price and save the arduous surveying for another
time not leaving the customer to have second thoughts. Allowing them to
retain customers and optimise their pricing workflow as it can be used as
another data point in their final calculation of the price. The stakeholder for
this demographic is Sophia Bennett who has been in the real estate business
for 25 years and currently works for a letting agency.

4

1.4 Research

1.4.1 Land Registry Price Paid Data App
https://landregistry.data.gov.uk/app/ppd

The Land Registry has created a basic application that allows users to
search the data and generate reports. The Land Registry are a government
agency that provides and maintains the price-paid data. This site aims to
allow users to search for previous sales and to analyse historical data via
reports that are exported as an excel sheet. These reports are very limited
in what they can show and are very slow to process often taking at least an
hour to process.

You can create ’Standard Reports’ which allow you to see the aggregated
prices and sales volume of an area grouped by house type or overall. These
are created by a web interface where the user can pick where they want the
data to be localised and the date range for the data to be gathered from. It
also gives the user the option to display banded prices or the average prices
of that area. The data can be localised further by grouping it via a different

5

sub-category of the address for the chosen region. These reports are quite
basic in the data they provide and leave a lot of the data to be manipulated
by the end user. They also often take a long time to be created when taking
into account their simplicity. When testing the reports took from 30-120
minutes.

Another feature of this application is the ability to search historical house
sales going back to 1995 when the Housing Regulations were introduced
requiring the price of property sales to be logged with the Land Registry.
This can be searched using several parameters including:

• Building Number

• Street

• Town or City

• District

• County

• Locality

• Postcode

• Property Type

• New Build

• Estate Type

• Price

• Date

Parts I Can Apply to My Solution

The PPD(Price Paid Data) applications have a lot of the features I would
like in my application like the ability to create reports and search historical
data but these features lack the speed and efficiency I would like from my
application. It also uses an effective user interface which allows for simple
usage and interaction which is what I’m aiming for with my applications as
I want it to be used by people ranging from inexperienced members of the
public to real estate agents with years of experience.

6

1.4.2 Rightmove
https://www.rightmove.co.uk/house-prices.html

Rightmove is the UK’s number one property portal and has been trad-
ing since 2000 and is now an FTSE 100 company hosting 90% of all property
listings on their site. This gives them a wealth of data on current property
sales which they can combine with previous sales data from the PPD dataset
along with many other datasets they have access to due to their corporate
stature. Combined these make up their subsidiary Rightmove Data Services.
Here they provide numerous services:

• Market Intelligence Centre

• Bespoke Data Analysis

• Development Insights Reports

• Surveyors Comparable Tool

• Automated Valuation Model

• Property Risk Alerts

7

Market Intelligence Centre

The market intelligence centre is an application that visualises and shows
the user’s current market data, current property prices, supply & demand
data. Combined this provides a bespoke suite of data visualisations and
figures which cannot be found anywhere else due to their monopolistic-like
company. All this data can be derived from a specific area and then filtered
via dates and property types to then be exported via CSVs or PDF reports.

Bespoke Data Analystics

For this, they work closely with their client to design a detailed report
for their requirements giving the client control of what they want out of it like
the date ranges, asking prices, number of price reductions, size of reductions,
rental yields and data from the Land Registry & Registers of Scotland. All
this data is combined and aggregated into a bespoke report that can be
published on a one-time basis or periodically over some time.

Automated Valuation Model

Rightmove’s AMV is used by over 400,000 properties each month to value
properties using its proprietary data and data provided by the Land Registry
and Registers of Scotland which is accompanied by a confidence score. This
is done via an interactive web interface or over an API allowing companies to

8

create their interface for in-house software or integrate it with their current
infrastructure.

1.4.3 Parts I Can Apply to My Solution

Rightmove has a lot of services with very similar features to what I aim
for my solution to have but are even more advanced as they have access to
lots more data. However, their use of GUI and an API to allow clients to
interact with their systems is exactly what I plan to do with my software
allowing users with basic skills to use it and for people to integrate it with
their tools. They also have high-speed data aggregation which is also what
I aim for my platform to have as a slow programme would result in a bad
user experience. Unfortunately, their system is locked behind a paywall and
is only accessible by incorporated businesses which is what I want to avoid
with my software as I want everyone to be able to use it.

1.4.4 Questionaire

Liam Carter’s Q&A

• How much research do you do before investing in a property?
”I tend to invest in the area around me as I know that best so I only have to do

limited research.”

• What do you use to look at properties to invest in?
”The main platform I use is Rightmove and I occasionally use Purple Bricks when

I can’t find what I want on Rightmove.”

• What type of apps do you prefer web, desktop or mobile?
”I’m often on the move looking at houses so I tend to be using either my phone or

a laptop so a website would be most suited to allowing me to access it on the move

with all my devices.”

• What features would you like to see?
”I only tend to buy houses near me as they are easier to manage and maintain so

a function that would allow me to localise the analyses. I would also like to see the

historical prices for areas and see how they compare so I can see what areas have

prices on the rise.”

9

• What issues do you have with current solutions?
”A lot of the services are aimed at companies so often have very expensive licences

or simply won’t give the time of day to an individual investor leaving me high and

dry as there are no other options except the Land Registries PPD app but that’s

very limited in its functionality and takes a while to complete the aggregation.”

• Would you be willing to pay for a service to analyse the hous-
ing market?
”Yes most certainly as long as it was within budget obviously unlike those other

commercially aimed services but it would have to meet all my requirements which

are a simple interface, lots of customizability when it comes to filtering and aggre-

gating the data, a quick interface so that I’m not stuck there waiting for my results

wasting time and accessible wherever I am with an internet connection.”

Sophia Bennett’s Q&A

• What process do you use for the valuation of a property?
”Well first our agents will have background knowledge of the area the property

is in and will do some more research before even entering the property like local

amenities, schools and shops nearby. Once that is all complete they’ll come and see

your property. They’ll walk through the property and take extensive notes along

with measurements and look for key selling points like original fittings and new

heating systems. After this, they’ll ask the buyer a lot of questions ranging from

whether they need the house to be sold quickly or any other information they could

offer up to help give us an idea of the price. Once all of this is done they’ll go back

to the office and combine their notes with their other research and come back to

the owner with a valuation.”

• How long does it take to value a house?
”For a firm with our expertise and experience the actual valuation process is quite

quick and can be done in a few hours overall but the main issue is fitting people in

with appointments.”

• Do you know of any solutions for analysing the housing mar-
ket?
”Yes we use some ourselves for doing research on a property before going to the

in-person part of the valuation. The system we use is provided by Rightmove but

is very costly as it has a yearly licence fee.”

10

• What would be your preferred method of accessing software?
”A lot of our staff are often out and about on properties or travelling between them

so they will often be using either laptops or iPads and in the worst-case scenario

their phone so all the software we use is web-based allowing them to access it from

anywhere.”

1.5 Features

My solution will consist of a web-based application accessible via any
internet-connected device with a web browser allowing most people to ac-
cess it. It will have a page for searching historical sales and viewing data
about a house whilst also comparing the prices to the local average and allow-
ing analyses to be done on individual houses. There will also be a section for
analysing larger areas which could be defined by a postcode or a county and
anything in between. These areas can then be compared with one another
providing greater insight. This data will be shown via graphs and interactive
maps to allow anyone to understand the data. It will also have an admin
panel accessible via authentication to allow for new sales data to be uploaded
and see common queries along with other analytical statistics.

1.6 Limitations

The major limitation of my solution is that I will not have access to in-
dividual data on the houses like the number of rooms and the acreage of
the plot it lies on. This could lead to incorrect predictions as my algorithm
will be ignorant to the fact that a house was sold for £50,000 as it had a
pool rather than the value of that area going up. This can be combated by
analysing areas with a greater volume of houses as they would be ruled out
as anomalous but this would not work in all scenarios. Gaining access to
this data would also pose a great challenge as it would require scraping data
from other sites like Rightmove which would be computationally and time
intensive.

Another issue would be getting up-to-date and accurate data. Although
the PPD dataset is perfectly acceptable it only gets updated once a month
and is always a month or two behind what is happening right now. This
could cause discrepancies in the data shown to the user and would also not

11

allow them to get the full insight as there could’ve been a drastic shift in the
past few months. Luckily the housing market is not very volatile most of the
time but there have been times when it changed overnight and would make
the statistics provided completely irrelevant. Unfortunately, there is no way
to mitigate this issue as the Land Registry is the only provider of this dataset
and doesn’t seem to be changing its upload schedule any time soon.

1.7 Requirements

1.7.1 Software

• Linux operating system - This will be required to run the SQL
server, Dask and the web server

• Python interpreter - The project will be written in mostly python
so this will be required to run it

• Web browser - This will be required by the users to access the pro-
gramme and use it

• PostgreSQL server - This will be used as the database to store the
sales data and query It

• Dask - This will be used for performing statistical operations on large
amounts of data

• NGINX - This will be used to host the website and serve the pages
to the users

1.7.2 Hardware

• Server - This will be required to run the database, web server and
data aggregator. It will require at least an 8-core processor to run
all the services and 16GB of RAM to hold the dataset in memory for
performing the statistical operations and an SSD as an HDD would not
be capable of the IOPS required to run a database

12

1.8 Success Criteria

Criteria Evidence
Insert the PPD data into an SQL
database in 3NF

Screenshot of a query from the
database showing sales data

Query data from the database
using Python

Showing the code and the terminal
output showing data from Python

Performing statistical operations
on data using Python

Screenshots of results from said
operations

Selecting data from specific areas
and aggregating it

Screenshot of result from
aggregation with area

Creating an API to interface with
and get data

Screenshots of successful web
requests showing data

Creating a user interface to show
data from the API via graphs and
figures

Screenshots of the user interface

Having searched for historical data
taking ¡500ms

Video of searching for historical
data with HTTP response time

Generating statistics for an area
and displaying taking ¡2000ms

Video of analysing a specific area

Upload new data to the website for
analysing and searching

Screenshot of new data

Setting time frames for analyses of
the data

Video showing the data changing
based on the time frame

13

Chapter 2

Design

2.1 Decomposition

The application will be broken down into four smaller more manageable
sections. These will allow me to develop the application more easily and allow
for easier testing and refactoring. These sections will be the web interface,
data processor & aggregator, data ingest and data storage & caching.

14

The web interface is how the user would interact with the application and
where the data will be presented to them. This will need to be responsive
and easy to use. This will further be broken down into the data visualisation
aspects and the data selection part allowing me to develop them individually
and get stakeholder feedback on each. This will be the only way the user
interacts with the programme so stakeholder feedback will be essential for
creating a good user experience. The visualisation will be done using D3.js
and the web interface will be done using svelte.js allowing for interactivity
and dynamic interfaces. It will receive the data for visualisation from the
backend which will be a flask server running a web API and server to serve
the static files.

Data processing & aggregation will allow me to perform statistical oper-
ations on large datasets in a very little amount of time improving the user
experience. This will work seamlessly with the data storage component allow-
ing for even greater efficiency. The main sub-component will be aggregating

15

the data using Dask which allows data to be processed in parallel across mul-
tiple processors over multiple machines meaning it can aggregate hundreds
of thousands to millions of rows in sub-second time again adding to the user
experience. To again improve efficiency a caching layer will be added so that
commonly executed queries need not be repeated saving computing time and
costs. After processing this data will need to be served to the user which will
be done via a Flask API which sends the data in JSON format over HTTP.
All of this works as one big organism creating a coherent user experience.

The data ingest component will be key for keeping the data accurate and
up to date as update files are released every month so the ability to ingest
and process this data promptly will result in a better representation of the
housing market at that point in time. This will be done by three different
components. Firstly the file will need to be downloaded from the government
website every month as soon as it’s available so a script will constantly be
checking the website to see if a file has been changed. Secondly, the file
will then need to be processed as it’s in the CSV format so a script will
convert it into a 2D array ready for insertion into the database. Thirdly it
will be inserted into the database but some rows are insert rows, addition

16

rows and deletion rows so those will need to be handled accordingly so that
the database remains up to date.

Data storage will play a large role in the overall efficacy of the application
as it will need to be able to sort through millions of rows in a few hundred
milliseconds and be able to join multiple tables each containing potentially
hundreds of thousands of rows. This will require a relational database and
the database of choice will be PostgreSQL. This will allow me to perform all
of the above and more as I can then use a full-text index to search partial
postcodes allowing for great granularity when analysing an area. All of the
data will be stored in a third normal form allowing for no unnecessary data
duplication and maintaining referential integrity. As mentioned before there
will also be a caching layer allowing for even greater speed. This will be done
using a Redis database which is an in-memory database which can store
key-value pairs (query-hash, result). This cache will act between the web
interface and data processing & aggregation components so that when a user
requests data it can be fetched from the cache instead of being recalculated.

17

It will be flushed every time an update is made to the database so that the
highest order of accuracy can be maintained.

2.2 Algorithms

The main part of my programme will be the statistical analysis & aggregation
module as this will require the most attention and optimisation as all the
other components have been done before and have lots of resources online
making them a lot simpler to develop. The main purpose for this module
will be to fetch data -> process it -> return it.

18

This will be broken down into two sections data acquisition & data aggre-
gation. These will then be further broken down into smaller sections as you
can see in the figure above. Once all these functions have been performed
this will be sent to the web interface where it will be visualised for the user
using various charts and tables.

2.2.1 Removing Outliers

This will be the function that is run the most out of all of these as every bit
of data fetched will need to have all the outliers removed so that it does not
make the results skewed in any way. This will be done using the standard
deviation of the data and then removing any data that is greater than 3 times
the standard deviation away from the mean. To speed the process up this
will be run on Dask so the dataset can be processed in parallel. The reason
I’m using 3 standard deviations as all the data I am using is continuous
and can be displayed as a normal distribution X ∼ N(x̄, σ2). Where x̄ is
the mean and σ2 is the variation. With normal distributions, the data can

19

be split up into standard deviations from the mean with a probability of it
being within that range. For example 68% of values lie within one standard
deviation, 95% lie within two standard deviations and 99.9% lie within 3
standard deviations of the mean.

2.2.2 Calculating the Standard Deviation

This will be run as much as removing the outliers as it will be required to
remove the outliers when showing the volatility of the house prices over the
month. This will be another metric in showing the user the state of the
housing market as they can see when three is the most potential to make
money and when the market is acting rather stale. So it will be used on a
wide variety of datasets like sales transactions, monthly percentage changes
and yearly percentage changes so will need to handle them accordingly.

This is the equation for standard deviation where n is the length of the
dataset and x is all the items in the dataset.

σ =
2

√√√√Σx2

n
−
(

Σx

n

)2

(2.1)

x is 4 x is 4
I imagine in the future I will need to further optimise this function as it

is pretty basic right now and only used the tip of the iceberg when it comes
to Dask functions.

20

2.2.3 Calculating the Percentage Change

Percentage change will be the key metric for comparing different areas and
their performance as house prices between areas so representing the changes
as percentages instead of absolute values allows for them to be easily un-
derstood since they will be normalised. It is also one of the more complex
functions as it requires a lot of manipulation of the data since the transac-
tions will need to be grouped by houses and then calculate the percentage
change between sales. This will then be extrapolated over the period between
sales so 10% over two years will result in a 5% APY. These will then need to
have the outliers removed and then averaged for an area. On a small scale,
this function will run in a reasonable amount of time but as you increase the
dataset the time increase exponentially so O(n) ≈ 2n. Further optimisation
will be required at a later date but for now, it is acceptable enough to pro-
ceed. This function will also be able to perform this aggregation on a more
granular scale for example monthly percentage change allowing the user a
better insight over a shorter period.

21

2.2.4 Parsing the CSV

Parsing the CSV file which contains the monthly sales data or the yearly sales
data will need to be a highly optimised process but luckily it is a rather simple
task. This will be written in Golang instead of python as it is significantly
quicker for these kinds of tasks that require a lot of iterations. As of right
now, the function will be single threaded but later down the line if required it
can be converted into a multi-threaded function allowing for it to be parsed
at a speed n time faster where n is the number of threads. Of course, this
will be limited by the number of cores in the CPU it is running on. The file
will be parsed line by line and each line is split into cells using a delimiter,
in this instance, it is a ’,’. These lines will then be saved as a list with each
item in it representing a cell from that row which will be stored in an array
where each item is a sales transaction. This array is then passed onto another
function to insert each transaction.

22

2.2.5 Inserting or Rectifying Transactions

Inserting a transaction is a fairly simple process and only requires a few
lines of SQL though it is a bit more complicated as a transaction can result
in different operations being performed which is denoted by the last cell
and the letter stored within. The letter A means that this transaction is
to be added to the dataset. The letter C means to edit the transaction
with this transaction id to have this information. The letter D means delete
this transaction with this transaction id. All these operations have to be
performed whilst maintaining referential integrity so that it maintains the
third normal form. Furthermore having the transactions inserted sequentially
will take forever as there are hundreds of thousands of transactions each
month so a master-slave architecture will be used. This is where the master
sends out jobs and the slaves receive those jobs and then complete them.
This means that the transactions can be inserted n times quicker where n
is the number of slaves but this will be limited by the throughput of the
database I am using.

23

2.2.6 Searching for Areas Flow Charts

When a user searches for an area they might not know the exact name or
what type of area it is so by storing all of the areas and their corresponding
types in an ElasticSearch database I can create a search index. Postcodes
will also be broken down into 5 different types Of areas allowing for greater
granularity.

24

This will allow me to send queries to the database and have it return all
areas and their types that match or are similar to what the user searched.
These will then be presented in a list for the user to select from allowing for
a greater user experience and making the programme easier to use for people
unfamiliar with the geography of England & Wales.

25

(FYI this is to be extended but I cannot think of any other major func-
tions at this point as IDK what other statistical operations I will perform
until I start development.)

26

2.3 Usability Features

This will be the first page the user lands on and aims to be as simple as
possible whilst still maintaining all the functionality required. The interface
is focused around this search bar as the user should be able to type in a
place or area and have the data come up without any extra work. I chose
this as I want this to be useable by any average person that has no extra
knowledge about computers or houses other than the basics. Whilst the user
is searching it will come up with suggestions below the search bar in a list
with the name of the area and what type it is whether it’s a postcode or a
district allowing them to more easily find places. Below the search bar is a
button which allows the user to enable more advanced options like excluding
certain building types or limiting the date range. These options are still all
accessible but are hidden unless needed so as not to distract the user.

27

After the user searches for the area and selects the one they want to
view from the list they will be sent to this page. In-between this page and
the search bar there will be a loading screen to indicate that something
is happening as the aggregations could take an extended period depending
on the area but for the time being, this will only be a nicety and not a
required feature. On this page will be a range of graphs and visualisations
all rendered using D3.js as it allows for a high level of customizability for each
plot so that they can be understood by all the users. There is also a minimal
amount of text as having a wall of text containing all the statistics would
be daunting for almost any user so using visualisations and only having the
bare minimum amount of text creates a lot better user experience. The figure
will also be made using contrasting pastel colours to not dazzle the user and
make viewing and reading easier on the eyes. The colours used are also all
colour-blind friendly.

28

Looking at one specific area is useful but only provides a micro view of
the housing market but comparing areas with each other and seeing their
performance alongside the national average provides a macro view of the
housing market. This will be useful for users who use this platform to judge
investment decisions as it allows them to look back through historic data
and judge which area has the most potential or which is the most stable.
Combining all these statistics gives the user greater insight into house prices
but requires the user to be able to interpret the figures correctly so it is more
aimed at the advanced user base. This will allow me to display more complex
statistics allowing an even greater insight. These more complex statistics will
also take longer to process so the page will use lazy loading to only load them
when the user can see them speeding up the overall load time and creating
a better user experience.

29

Being able to manage the site from a single page will be essential to
find bugs and seeing trends in what users are doing on the platform. From
this page, you will be able to upload the new monthly file manually if it
hasn’t detected them automatically, flush the query cache forcefully if some
incorrect data is being stored there and rebuild the search index. All of
these operations would normally be performed automatically but having a
manual override allows me to fix any issues that may occur. It will also
allow me to look at popular queries and precache them to improve user
experience. Alongside them will be all the most recent errors that have been
logged so that they can be analysed and debugged improving the overall user
experience. This page will be locked behind a username and password so
that no one can access this panel and use it for malicious purposes.

30

2.4 Variables & Data Structures

2.4.1 Database Architecture

The database structure has been designed to be in the third normal form.
This means that there is little to no duplicate data, referential integrity
will be maintained and will simplify data management. This will improve
efficiency when fetching, inserting and updating data which will improve the
overall flow of the entire application. All of the columns will have individual
indexes as they will be sorted pr searched via making these quicker so that it
can do an index search vs a collection scan which is highly inefficient. All the
columns are defined below with their corresponding data type and purpose.

Name Data Type Table Purpose
price int sales The sale price of the house
date Date sales The date of the sale

31

new Boolean sales The sale price of the house
freehold Boolean sales Whether or not it is freehold

or leasehold
type char sales The house type whether it is

detached, semi-detached or a
terrace

ppd cat char sales Whether or not it was sold at a
standard price A or had addi-
tional costs like repossessions
B

tui varchar(36) sales String used to uniquely iden-
tify a transaction

houseid varchar(150) sales/houses A string used to uniquely iden-
tify a house

paon varchar(150) houses Primary addressable object
name like house number or
name

saon varchar(150) houses Secondary addressable object
name e.g. the flat number in
the building 3b

postcode varchar(15) houses/postcodes The postcode of the house
street varchar(70) postcodes The street of the house
town varchar(50) postcodes The town of the house
district varchar(50) postcodes The district of the house
county varchar(50) postcodes The county of the house

2.4.2 Key Variables

Name Data Type Purpose
Requested
Data

list Contains the list of tuples for the house data
(id, price, houseID, date)

Time frame tuple Contains the two dates to request data be-
tween

Location string The location to filter the data by
Session dict Contains all the session data for the website

32

Database host str IP address of the database server
Database user str Username for the database
Database pass-
word

str Password for the database

Standard Devi-
ation

float The standard deviation of a given dataset

Dataset python object This will be a resilient distributed dataset
which allows aggregations to be performed on
it in parallel. This will contain the sales data
for a given area

Dask Address str The IP address for the Dask cluster
Job ID str The id of a Dask job so that the status can be

displayed to the user
Dark Theme boolean Whether or not to display the website in a

light or dark theme
Exclude dict Contains information on what types of sales to

include or exclude from the aggregations. Can
be set by the user via the advanced section

2.4.3 Validation

Area Search Input

The user will be able to type whatever they like in this input so a few valida-
tions will need to take place. The first one that will take place is client-side
validation. This is where code running on the web browser validates the
input but this type of validation can be easily bypassed so is not used for
security and will be used for improving the user experience. It will work by
not allowing the user to type in special characters or characters from other
languages as these cannot be used in addresses or the names of areas in Eng-
land & Wales. The other type of validation that will take place is server-side
which will aim to prevent SQL injection as the data inputted by the user will
be used in an SQL query to find the relevant places to suggest to the user.
This will be done by iterating through the string and looking for any special
characters and removing them as they are not necessary and are mostly used
with malicious intent.

33

Monthly Update CSV File

When inserting the monthly update file into the database it needs to comply
with the CSV format which by standard uses a comma to separate cells and a
new line to indicate a new row. This is all checked when it is being loaded into
memory and a 2d array. This validation is paramount as incorrect formatting
could result in cells getting mixed up or rows combined which then would
make any statistics derived from that data inaccurate and unusable.

2.5 Testing

2.5.1 Unit Testing

Testing will be done throughout development making debugging easier as any
issue can then be narrowed down to a single function or group of functions.
The applications will be broken into four distinct units (Web Interface, Data
Ingest, Data Storage, Data Processing). These will each have numerous tests
as they will be made up of tens of functions so the tests will be abstracted
into these 4 units. The tests will be carried out automatically on each push
request & merge to the GitHub repository. GitHub has a built-in DevOps
framework which will allow me to create a YAML file defining all the tests
it needs to run and then will return the results. If it fails any of the tests it
will not allow any of the code to be merged therefore not creating any issues.
By doing this I can be sure that the entire programme is functional and that
breaking changes are not implemented. Below is a list of all the tests I will
carry out. If all these tests are successful I can be sure that my programme
is fully functional.

Function Working
Check standard deviation function produces correct values
Check removes outliers removes all data outside the 99.99 per-
centile
Check CSV parser detects bad files
Check SQL escape function removes all special characters
Check monthly update files are parsed correctly into amend,
delete & change
Check monthly file downloader downloads latest file available

34

Check D3.js accepts correct data only for graphs
Check Redis cache is hit before running an aggregation
Check the correct data is fetched from the database for an SQL
query
Check connection to Dask is working
Check relational integrity of database to maintain third normal
form
Check cache is flushed after new data is added
Check recent queries are properly stored in Redis cache

Post Development Testing

Once all of the above tests have been successful my programme will be passed
on to my stakeholders who can use the programme and find any issues that
were not detected during the development phase. These could be misaligned
text in the GUI, graphs not loading or images not showing up. There could
also be programmatic issues that I missed that they found. These can be
logged using a piece of software that will implement in my code called sentry
that logs code errors and crashes which are then logged and aggregated to
show repeated issues and what caused them allowing me to more easily debug
them. All of these combined will allow me to eliminate as many bugs or issues
as possible resulting in the best user experience.

35

Chapter 3

Development & Testing

3.1 Ingesting Sales Data

3.1.1 Initial Setup of Service

My application will rely on a fair few services for data storage, data pro-
cessing and communication between the modules. This will all be hosted on
servers at my home using virtual machines running on a hypervisor called
Proxmox. Proxmox allows me to manage virtual machines over multiple
servers from one web UI. By using VMs I can provision a set amount of
computing resources for each service.

I will need to access these VMs remotely so I can develop the application

36

when I’m at school or away from home. To accomplish this I will use a VPN
which allows me to tunnel into my home network from anywhere with an
internet connection and access all devices on the network as if I was there.
The VPN is run on a containerisation platform called Docker (running in a
VM) that allows me to virtualise an application with very little overhead as
opposed to a VM to run services independently of each other as if they were
running on independent machines. By doing this I remove all dependency
conflicts and give myself the ability to scale my platform by simply running
more instances of a service if it supports that. Once I was able to access my
network remotely I could start setting up other services on Docker. To do
this I used a container management tool called Portainer which allows me to
create, stop, start, restart and edit containers using a web UI. In the image
below you can see all the containers I am running.

These services are all deployed using a ’docker-compose.yml’ file where
I can define what service I want to run and any variables that it will need.
This makes adding new services and updating existing ones super easy. Here
below you can see an example of how a YAML file is formatted and how a
service is defined. The services I will be running on docker will include Dask
for data processing, a container for inserting sales into the database, the
webserver for the web interface, database management UI, and MongoDB
for caching aggregations. The service being defined here is a web UI used to
manage a PostgreSQL database.

37

v e r s i o n : ”3 .9”
s e r v i c e s :

pgadmin :
image : dpage/pgadmin4
r e s t a r t : always
environment :

PGADMIN DEFAULT EMAIL: user@eg . com
PGADMIN DEFAULT PASSWORD: root

volumes :
− pgadmin−data : / var / l i b /pgadmin

por t s :
− ”5050:80”

networks :
− net

The database this will be managing is not deployed using a container and
instead runs in its virtual machine as it provides better performance than a
Docker container. The VM is running Ubuntu Server 22.04 with Postgres 15
running on it as a standalone service. This VM has been allocated 6 cores
and 16GB of RAM so that it can perform numerous queries at once and have
enough RAM to store indexes in. Below are the SQL statements used to
create the tables required.

create table postcodes
(

postcode varchar (15) not null
constraint postcode key

primary key ,
s t r e e t varchar (70) ,
town varchar (50) ,
d i s t r i c t varchar (50) ,
county varchar (50) ,
outcode varchar (4) ,
area varchar (2) ,
s e c t o r varchar (6)

) ;
create unique index pos t code idx on postcodes
(postcode) ;

38

create index a r ea id x on postcodes (area) ;
create index county idx on postcodes (county) ;
create index d i s t r i c t i d x on postcodes
(d i s t r i c t) ;
create index outcode idx on postcodes
(outcode) ;
create index s e c t o r i d x on postcodes (s e c t o r) ;
create index s t r e e t i d x on postcodes (s t r e e t) ;
create index town idx on postcodes (town) ;

create table houses
(

house id varchar (150) not null
constraint house id key

primary key ,
paon varchar (150) ,
saon varchar (150) ,
postcode varchar (15)

constraint pos t codes keys
r e f e r e n c e s postcodes ,

type char
) ;
create index pos t code s index on houses
(postcode) ;
create index type idx on houses (type) ;

create table s a l e s
(

t u i varchar (36) not null
constraint t u i k e y

primary key ,
p r i c e integer ,
date date ,
new boolean ,
f r e e h o l d boolean ,
ppd cat char ,
house id varchar (150)

constraint h ou s e i d f k

39

r e f e r e n c e s houses
) ;
create index date idx on s a l e s
(date) ;
create index f r e e h o l d i d x on s a l e s
(f r e e h o l d desc) ;
create index ppd cat idx on s a l e s (ppd cat) ;

Once all the tables are created I will need to set up Apache Kafka which
allows the software modules to communicate with each other. This is run on
a VM as I had trouble running it on Docker as it has its own networking and
I wasn’t able to access the container from outside the Docker environment,
so it is instead run as a standalone service. By running it on a VM I can get
around this issue allowing me to access Kafka whilst running the application
on my laptop so I can test it whilst developing.

3.1.2 Sales Ingest & Upload

Once all of the services are running I can start development. The first module
that needs developing is the data ingest programme which will allow sales to
be read from a text file and then inserted into the database. It will consist of
3 scripts one for reading sales from the text file and sending them to Kafka,
another for checking if a new file has been released and then sending the sales
to Kafka and finally one to receive sales from Kafka and then insert them
into the database.

Sales Upload Programme

First I will start with the script to read sales from a text file as data is
needed to test the other scripts. The Land Registry has a text file which
contains all sales from 1995 to the most recently published month. This can
be downloaded from their website. Inside the file are millions of rows each
representing a sale with comma-separated columns storing the corresponding
data for that sale. Below is an example of a row from the file.

To send this on Kafka and stored in a database it will need to be parsed
into tuple format each representing a sale. Below is the code which opens the
text file and then parses it. If the file opened is not a valid CSV file an error
is thrown and the programme stops so that no further errors are created.

40

from csv import r eader

with open(” . / pp−complete . txt ” , ” r ”) as f :
Opens the f i l e
try :

c s v f i l e = reader (f) # Parses the f i l e i n t o a
l i s t

except :
raise ValueError (” I n v a l i d CSV f i l e ”)

Once the list of sales has been generated the sales need to be sent as
messages in a Kafka topic. This is done by iterating through the list and
then sending each row one after the other once it has been converted to the
correct data type and encoded as bytes. Below is the code to do this.

for s a l e in c s v f i l e :
s a l e = [s a l e [0] [1 : − 1]] + [i for i in s a l e [1 :]]
Removes b r a c k e t s from the t r an sac t i on ID
s a l e b y t e s = str (s a l e) . encode (”UTF−8”)
Converts the l i s t i n t o a s t r i n g and
#then encodes i t i n t o b y t e s
s e l f . producer . send (” new sa l e s ” , s a l e b y t e s)
Send the s a l e to ka fka

After running this code I found it to be very slow. To find the reason for
this I used CProfiler which allowed me to see the execution time of each line
and how many times it was run. I concluded that although the operations
by themselves are very quick when run 26,000,000 times it quickly adds up
as a 1ms difference can take off 7 hours. To combat this I used a while
loop as they are quicker than for loops and I then used a generator to apply
the operations en-masse to the list which is quicker than doing each sale
individually. Generators are quicker as they don’t load all the results into

41

memory at once and effectively lazy-load the results as you iterate through.
Then apply the operations en-masse using the map function as it is built into
python and designed for this exact purpose so is a lot quicker as is written
in native C. As opposed to converting the list to a string and then encoding
it as bytes it instead encodes it into bytes directly using the pickle library
which reduced the time further. Another issue I found more to do with
efficacy rather than efficiency is the Kafka official library for Python would
often have issues connecting to my Kafka instance but would act as if it was
connected but not send messages. Eventually, I concluded that I should use
a better-supported library and switched to the confluent kafka library which
not only eliminates this issue but is more efficient at sending messages and
has a much larger group of maintainers.

After solving all of these issues the final code ended up looking like this.

with open(” . / pp−complete . txt ” , ” r ”) as f :
c s v f i l e = reader (f)
c s v f i l e = map(lambda x : dumps ([x [0] [1 : − 1]] +

[i for i in x [1 :]]) ,
c s v f i l e)

App l i e s opera t i ons to a l l s a l e s
while True :
While i s qu i c k e r than a f o r loop

try :
l i s t b y t e s = next (c s v f i l e)
Converts l i s t to by t e array
while True : # Ret r i e s i f message f a i l s

try :
s e l f . producer . produce (” new sa l e s ” ,

l i s t b y t e s)
Send each s a l e as b y t e s
s e l f . producer . p o l l (0)
break

except Buf f e rEr ro r :
Flushes message b u f f e r i f f u l l

print (time . time () , ” Flushing ”)
s e l f . producer . f l u s h ()
Sends any unsent messages
tha t are c l o g g i n g up the

42

bu f f e r
print (time . time () ,

” Fin i shed f l u s h ”)
except S t o p I t e r a t i o n :

s e l f . producer . f l u s h ()
break

All of this is then put into a class and broken up into functions for opening
the file, connecting to Kafka and uploading the sale. I then tested it to see
how long it would take to upload the entire sales history in one go. Below is
the output once the programme has finished running.

You can see it took 1069 seconds. This works out to about 24,300 inserts
per second making it perfectly adequate for my use case as this only needs
to happen once and then be updated each month. With this kind of speed,
the update should only take 5 seconds. I also had To test to see if Kafka
was receiving the messages so I made a quick script to receive and print out
messages from Kafka.

consumer . s u b s c r i b e ([” new sa l e s ”])
while True :

msg = s e l f . consumer . p o l l (1 . 0)
Fetches the l a t e s t message from ka fka
i f msg i s None : #Checks the message i s n t empty

continue
i f msg . e r r o r () : # Checks t h e r e are no e r ro r s

print (”Consumer e r r o r : {}” . format (msg . e r r o r ()))

43

continue
s a l e : L i s t = loads (msg . va lue ())
Converts the b y t e s in t o a python l i s t
and a s s e r t s the co r r e c t data type v a l i d a t i n g
the message
print (s a l e)

I then successfully ran this code and received back all the sales that had been
sent to Kafka. Below you can see the output for this.

Unfortunately due to the nature of this module, the stakeholders weren’t
able to provide any meaningful input as the user has nothing to do with the
insertion of the sales and only deals with the aftermath of it. But it does
meet the success criteria of being able to upload new data to the website for
analysis.

Code Layout

Sales Ingest Programme

Now that the upload programme has worked I can develop the ingest server
as it needs the data from the upload script to test it. Firstly I need to be
able to receive the data from Kafka. This was done using the confluent kafka
module like the uploader. I realised as well that I don’t want to be storing
the login credentials for Kafka and the database in the programme. To solve
this I used a .env file where I can store key-value pairs containing all the
data. This can then be loaded into the programme using the os module.

def l oad env (s e l f) :
Loads the environment v a r i a b l e s
where 1 s t arg i s the name and
2nd i s the d e f a u l t va lue

44

s e l f . DB = environ . get (”DBNAME” , ” house data ”)
s e l f . USERNAME = environ \

. get (”POSTGRES USER” , ” house data ”)
s e l f . PASSWORD = environ . get (”POSTGRES PASSWORD” ,

”password”)
s e l f . HOST = environ . get (”POSTGRES HOST” ,

” 1 9 2 . 1 6 8 . 1 . 1 3 3 ”)
s e l f . KAFKA = environ . get (”KAFKA” ,

” 1 9 2 . 1 6 8 . 1 . 1 4 6 : 9 0 9 2 ”)

Once the environment variables have been loaded they can be accessed to
connect to the database and Kafka. Now that the programme has connected
to Kafka it can start receiving messages. The code for this is the same as the
test for the sales upload script above. Once I confirmed it could receive mes-
sages I then needed to process the data to be inserted. This meant breaking
the data up into its corresponding data and changing a few of the data types.
For example, the new build and sale type columns were stored as characters
despite only having two possible values so they were changed to boolean. The
dates were also represented in a string format so they needed to be converted
into a Python Datetime object so that they can be inserted correctly. All
of these operations also validate the data as if any were incorrect an error

45

would get thrown and they wouldn’t be inserted.

new = True i f s a l e [5] == ”Y” else False
Convets to boo lean type
f r e e h o l d = True i f s a l e [6] == ”F” else False
Converts to boo lean type
date = datet ime . s t rpt ime (s a l e [2] , ”%Y−%m−%d %H:%M”)
Converts s t r i n g to date t ime o b j e c t

This allows the columns to be more easily searchable as indexes can be ap-
plied to them dramatically decreasing the search time. Without an index,
the database has to do a linear search which takes a lot longer than a binary
search which is used by the database when a column is indexed. A unique
identifier also had to be created for each house so that they could be refer-
enced by each sale. Initially, I created a sha256 hash of the attributes which
would then be set as the houseid. After some testing, I realised that this
would take too long and was completely necessary as I could simply append
the attributes to each other making a unique string.

houseID = str (s a l e [7]) + str (s a l e [8]) + str (s a l e [3])

Once I had completed all of these operations the data could be inserted
into the database. I originally did this using the official library for Post-
greSQL. This worked fine and allowed me to insert all the data into the
database. Below is the code for this. When I tested this though I was
getting about 50-60 inserts per second which are acceptable but when do-
ing 26,000,000 sales it would take about 120 hours or 5 days which is an
unnecessary amount of time. I used CProfiler again to see where its main
source of time loss was and it would often get stuck waiting for the insert
to finish. To combat this issue I switched to an asynchronous model which
allowed me to run other code whilst it was waiting for the query to finish.
Luckily there is another library for PostgreSQL which is asynchronous and
uses the same interface as the standard one so it was as easy as putting an
await keyword in front of the function and then it would run asynchronously.
This means I was able to get about 500 transactions per second meaning I
could get the insertion done in about 14 hours which is a lot quicker than the
other method. Due to how I structured the insertion system the ingest script
could be horizontally scaled by simply running more instances of it and Kafka

46

would split the messages up between all the instances. This would make it
x times quicker where x is the number of instances running as long as the
database could keep up. I found a good number was about 4 instances as it
would be quick enough and wouldn’t completely bog down the database.

After testing my ability to search the types of areas I realised that it
was very slow as I would often have to do multiple joins and linear searches
as I could use the correct index as the data wasn’t in the correct format.
This lead me to create another table called area which had two columns the
area type and the name of the area. A compound key was made of these
to stop duplicates from being inserted and a full-text index was applied to
the area name column allowing for searching using partial bits of the name
like ”Che” for ”Chester”. To accomplish this I needed to insert every area
along with its corresponding type. These area types consisted of ”postcode”,
”street”, ”town”, ”district”, ”county”, ”outcode”, ”area”, and ”sector”. The
last three are sub-parts of a postcode allowing for great greater granularity
between town and street. For this I needed to break the postcode down into
three parts. This was done you RegEx which allows you to search a string
for parts which match a certain pattern. This pattern is defined as a string
which is then passed to the function along with the string to search. Below
is the code which breaks the postcode down into its fundamental parts and
then reassembles it as each area.

po s t code r e = ” ˆ (? : (?P<a1>[Gg] [I i] [Rr]) (?P<d1>)
 (?P<s1>0) (?P<u1>[Aa]{2})) | (? : (? : (? : (? P<a2>
 [A−Za−z]) (?P<d2> [0 −9]{1 ,2})) | (? : (? : (? P<a3>

47

 [A−Za−z] [A−Ha−hJ−Yj−y]) (?P<d3> [0 −9]{1 ,2})) |
 (? : (? : (? P<a4>[A−Za−z]) (?P<d4> [0 −9][A−Za−z])) |
 (? : (? P<a5>[A−Za−z] [A−Ha−hJ−Yj−y]) (?P<d5>[0−9]
 ? [A−Za−z]))))) (?P<s2 >[0 −9]) (?P<u2>[A−Za−z]{2}
)) $” # RegEx f o r e x t r a c t i n g pos tcode par t s

par t s = re . f i n d a l l (postcode , po s t code r e) [0]
outcode = par t s [0] + par t s [1]
area = par t s [0]
s e c t o r = par t s [0] + par t s [1] + ” ” + par t s [2]

Once all the area types have their corresponding value they can be in-
serted into the database. I did this using a simple for loop which iterates
through the area types and their values and then passes them into an SQL
statement to be executed one by one.

a r ea type s = [” postcode ” , ” s t r e e t ” , ”town” ,
” d i s t r i c t ” , ” county ” , ” outcode ” ,
” area ” , ” s e c t o r ”]

a r eas = [s a l e [3] , s a l e [9] , s a l e [1 1] , s a l e [1 2] ,
s a l e [1 3] , po s t code pa r t s [0] ,
po s t code pa r t s [1] , po s t code pa r t s [2]]

Extrac t s area va l u e s from sa l e
va lues = []
for idx , a r ea type in enumerate (a r ea type s) :

a rea data = (area type , a reas [idx])
await s e l f . conn \

. execute (”””INSERT INTO areas (area type , area)
VALUES ($1 , $2) ON CONFLICT (area type , area)
DO NOTHING; ””” , a r ea data)

This code worked and was able to successfully insert the areas into the
table. When I ran it with the rest of the code to insert all the sales into
the database it would only get about 10-20 transactions per second. I then
found that each insert into the areas table was taking 50ms so when that is
multiplied by 8 it’s about a second per sale which would take forever. Instead,
I researched ways to batch-insert data using the PostgreSQL library. I came
across an ’executemany’ function where you pass it a list of data and a single
SQL statement and it will batch insert that data. This is more efficient as
each transaction has a set amount of overhead so by doing them all at once I

48

remove a lot of that overhead. This got the transaction time down to about
200ms which is a lot better but still a relatively slow time. The code below
is the final implementation of the batch insert.

a r ea s = [s a l e [3] , s a l e [9] , s a l e [1 1] , s a l e [1 2] ,
s a l e [1 3] , po s t code pa r t s [0] ,
po s t code pa r t s [1] , po s t code pa r t s [2]]
Extrac t s areas va l u e s from sa l e

va lues = []
for idx , a r ea type in enumerate (s e l f . a r e a s) :

I t e r a t e s a r ea t ype s where idx i s a counter
area data = (area type , a reas [idx])
va lue s . append (area data)
Create l i s t o f areas and t h e i r t ype s
await s e l f . conn \
. executemany (”””

INSERT INTO areas (area type , area)
VALUES ($1 , $2) ON CONFLICT
(area type , area)
DO NOTHING; ””” , va lue s)

Batch i n s e r t s areas

I further researched how to improve the performance of a database when
inserting lots of data and found indexes are the main cause of slowdown as
they take a lot of CPU time to calculate. This is especially prevalent with a
full-text index as they require a lot of preprocessing. To combat this issue I
manually disabled the index whilst it is loading large amounts of data into
the database and then reenable it to process the index all at once. This would
only really work when the database is being initialised as there won’t be any
other queries being executed. When updating the database with monthly
sales the index will have to be enabled but this should work out fine as there
are a lot fewer sales to be inserted so the issue is not as amplified.

Now that the code is complete and working I need to be able to run it on
my servers. I did this using a Docker image and defined the parameters using
a ’Dockerfile’. In this file, I select what images I want to base the container
on which would be python in my case and then install any dependencies and
set the run command. This can then be pushed to a docker image repository
on my server where it can be pulled and have multiple instances run.

49

FROM python : 3 . 9 . 7 # Def ines python v e r s i o n

WORKDIR /app

COPY . .

RUN wget https : // github . com/ l i b r d k a f k a /v1 . 9 . 0 . ta r . gz
&& tar xvz f v1 . 9 . 0 . t a r . gz
&& cd l ib rdka fka −1.9.0/
&& . / c o n f i g u r e
&& make
&& make i n s t a l l
&& l d c o n f i g

Downloads and compi les kafka l i b r a r y

RUN python3 −m
pip i n s t a l l −−upgrade pip s e t u p t o o l s wheel
RUN python3 −m pip i n s t a l l c o n f l u e n t k a f k a asyncpg

CMD [” python3 ” , ” i n i t . py ”]
Def ines the command to run the s c r i p t

To test this I ran the programme and gave it the complete file containing
all of the sales from 1995 to the present day. To confirm that it was inserting
sales I was able to use the database management web UI which showed this.

50

Here you can see the sales being inserted and the rate at that they are
being inserted. I left it to run and when I came back it had finished. It had
successfully inserted all of the sales as you can see in the image below.

The little feedback I did get from my stakeholders for this module was
about the ability to update the database with new sales in a very little
amount of time meaning that they get the most up-to-date statistic and the
ability to quickly search for a specific area with auto-complete making their
workflow more efficient. It also hit the success criteria of inserting data into
a database in a third normal form where there is no duplication, avoids data
anomalies, and maintains referential integrity.

Code Layout

3.1.3 Sales Updated Checker & Uploader

Now that I can read sales from a file and then upload those sales to the
database I need to be able to keep that data up to date. This will be done
using a separate script that will pull the updated file from the land registry
to see if it has changed since the last month. If it has it will then be sent to
Kafka to be uploaded to the database. Luckily this script will use a lot of the
code from the script used to upload the complete file. The main functionality
will be getting the hash of the file and then comparing it to the previous one.
This will be done using the SHA256 hash of the file which will be compared
to the previous hash stored in a settings table in PostgreSQL. The code for
downloading the file will use the Python library called requests.

f i l e l i n k = ” http :// prod . pub l i cdata . l a n d r e g i s t r y . gov . uk
.

 s3−website−eu−west −1.amazonaws . com/

51

 pp−monthly−update . txt ”
f i l e = get (f i l e l i n k) . content
Downloads f i l e us ing HTTP ge t r e que s t and then s t o r e s
the content

Once the file is downloaded it needs to be hashed so that it can be com-
pared to the previous update file to see if it has changed or not. This is
done using the Hashlib library which is a standard library for python so it
is highly optimised and tested. Once the hash has been calculated it then
needs to be compared to the hash of the previous update is fetched from the
database using SQL the code for this is below.

f i l e h a s h = sha256 (f i l e) . hexd ige s t ()
Ca l cu l a t e hash o f f i l e
s e l f . cu r . execute (”SELECT data FROM s e t t i n g s
 WHERE name=’ update hash ’ ; ”)
Fetched prev ious hash from the database
prev hash = s e l f . cu r . f e t chone ()

52

Check to see i f f i l e has been i n s e r t e d a l r eady
i f prev hash i s not None :

prev hash = prev hash [0]
i f f i l e h a s h != prev hash :

Compare hash to hash o f o l d f i l e
s e l f . update database (f i l e , f i l e h a s h)
Updates database wi th new hash

else :
print (”No new f i l e yet ”)

Once the hashes have been compared if they are the same the file needs
to be inserted into the database. This is done using the same code as the
sales upload programme so I won’t show that but there is a slight difference
as a file downloaded needs to be converted so that it can be iterated through
as a list since its current form is a byte list.

c s v f i l e = reader (Str ingIO (f i l e . decode (”UTF−8”)))
Converts the b y t e s in t o a s t r i n g and then in to an
in memory b u f f e r to be read by the CSV reader

This is another module that doesn’t get any feedback from the stakehold-
ers but it does again hit one of the success criteria of being able to upload new
data to be analysed. It was also tested by setting the hash in the database
to an empty value so it would insert the update file. The output can be seen
below.

You can see it uploaded the new file in a matter of seconds and added
the new hash to the database shown in the images below.

53

If I run the programme again it will say that there is no new file and will
then stop the programme.

This module has successfully passed all of the tests and works as expected.

Code Layout

3.2 Data Processor Programme

Now that the data is stored in a database and is being kept up to date it can
be processed and sent to the users. This needs to be done in an acceptable
amount of time so that the user isn’t sitting and waiting for the data to load
and be processed. To accomplish this I’m using a few technologies. The
first one is multiprocessing which gives me the ability to run aggregations
on the data in parallel making them run quicker by as many cores as I
allocate to that aggregation. I will also use Kafka to give me the ability to
run multiple instances of the data Processor and share the queries between
them increasing the number of queries I can run at once by the number of
instances I have running. On top of this will be a query cache where the
results will be stored along with the date when they were calculated. This
means that when a query comes in it can be compared to the cache and if
there is one in the cache it will be returned. This will reduce the number
of calculations dramatically as once one area has been aggregated it won’t
need to be done again for another month or so when more data is released.
The sub-components of this module will be the data loader to fetch the sales
from the database; the aggregator which produces the stats from the sales;
the processor which coordinates the data loader and aggregator along with

54

checking the cache and receiving new queries and finally the web API which
allows users to submit and monitor queries along with searching for an area.

3.2.1 Data Loader

To produce accurate statistics the programme needs to be able to access the
data reliably and make sure it maintains integrity. This is done using Post-
greSQL which is an ACID-compliant database. ACID stands for atomicity,
consistency, isolation, and durability. Atomicity means that a transaction
will either succeed or fail so you won’t get part of it working and some of
it not. This means that only the full data is returned and not part of it so
the statistics will always be accurate. Consistency means that all the data
will comply with the rules of the database so , for example, a house must
have a postcode and a house number so therefore you can be sure that all
the data is there. Durability means that once a transaction is committed it
will always be there unless changed so even if the server crashes as long as

55

the transaction has been committed it will be there.
When accessing the data it will need to be joined from the 3 tables to

get all the appropriate data. The most efficient way to do this is by reducing
the number of rows it needs to search and then joining them as opposed to
joining all the tables and then filtering. This is done by getting the area
you want to search and then getting all the postcodes in that area and then
getting all the houses which aren’t of the ’other’ type and then getting all
the sales that have a ppd cat of ’A’. The query for this is below.

SELECT s . p r i c e , s . date , h . type , h . paon , h . saon ,
h . postcode , p . s t r e e t , p . town , h . house id

FROM postcodes AS p
INNER JOIN houses AS h ON p . postcode = h . postcode

AND p . outcode = ’CH64 ’
INNER JOIN s a l e s AS s ON h . house id = s . house id

AND h . type != ’O’
WHERE s . ppd cat = ’A ’ ;

The line where it says ”p.outcode = ’CH64’” can be swapped to work with
any area type like a county or town. This will be done dynamically depending
on what arguments are passed to the data loader. The area type will be
inserted using a python f-string as it has a discrete value so there is no need
to escape it. The area name will be passed as an argument to the execute
function along with the query string. The code for this is below.

query = f ”””SELECT s . pr ice , s . date , h . type , h . paon ,
h . saon , h . postcode , p . s t r e e t , p . town , h . house id
FROM pos tcodes AS p
INNER JOIN houses AS h ON p . pos tcode = h . pos tcode
AND p .{ s e l f . a r ea t ype } = %s
INNER JOIN s a l e s AS s ON h . house id = s . house id
AND h . type != ’O’
WHERE s . ppd ca t = ’A ’ ;
”””

s e l f . cu r . execute (query , (s e l f . area ,))
Executes query and i n s e r t s area

Before running this query though it needs to verify that the area and
area type are valid so that time is wasted running an expensive query. To
verify the area type the value is compared to a list of valid types. Once it has

56

passed that it runs a query to check that there are corresponding postcodes
for that area. Once it passes all of these tests only then is the main query
run. This reduces the number of unnecessary queries that are executed so
that the database isn’t bogged down.

s e l f . a r e a s = [” postcode ” , ” s t r e e t ” , ”town” ,
” d i s t r i c t ” , ” county ” , ” outcode ” ,
” area ” , ” s e c t o r ”]

i f s e l f . a r ea type not in s e l f . a r e a s :
Checks i f area type i s in l i s t
and r a i s e s error i f not
raise ValueError (” I n v a l i d area type ”)

s e l f . cu r . execute (f ”SELECT postcode
 FROM postcodes
 WHERE { s e l f . a r ea type } = %s
 LIMIT 1 ; ” ,

(s e l f . area ,))
Searches pos tcode t a b l e f o r area
i f s e l f . cu r . f e t c h a l l () i s not [] :

return True
Returns t rue i f r e s u l t i sn ’ t empty

else :
raise ValueError (f ” I n v a l i d

 { s e l f . a r ea type } entered ”)
Raises error i f no pos t codes re turned

Below is a table with testing inputs their expected output and actual
output and as you can see it worked perfectly.
Input Expected Actual
postcode, CH2 1DE True True
jwnjdbf, CH2 1DE Inavlid Area Type Invalid Area Type
postcode CH7384 342 Invalid postcode

entered
Invalid postcode

entered

Now that the area and area type has been verified the data is fetched from
the database using the query from before. This is done using the PostgreSQL
Python library but the synchronous version as the packages I plan to use to
do aggregations are not asynchronous compatible. This part is fairly simple
as it uses a lot of similar code from the previous parts it is simply executing

57

an SQL query and then storing the results in a variable and then raises an
exception if there are no results. To store the data I’m using a Pandas data
frame as it allows me to easily convert it into a Dask data frame later on for
parallel processing. You can see this process in the code below.

query = f ”””SELECT s . pr ice , s . date , h . type , h . paon ,
h . saon , h . postcode , p . s t r e e t , p . town ,
h . house id

FROM pos tcodes AS p
INNER JOIN houses AS h ON p . pos tcode = h . pos tcode

AND p .{ s e l f . a r ea t ype } = %s
INNER JOIN s a l e s AS s ON h . house id = s . house id

AND h . type != ’O’
WHERE s . ppd ca t = ’A ’ ;
”””

s e l f . cu r . execute (query , (s e l f . area ,))
Executes SQL query
data = s e l f . cu r . f e t c h a l l ()
Returns r e s u l t s from query
i f data == [] :

Raises error i f no r e s u l t s re turned
raise ValueError (f ”No s a l e s f o r area { s e l f . area }”)

else :
s e l f . data = pd . DataFrame (data)
Stores r e s u l t s in pandas dataframe

Once this has been run the rest is handed off to the aggregator to process
and reduce the data into statistics to give meaningful insight. Below you can
see the output for the data loader when asking for sales from the ’CH’ area.

Code overview.

3.2.2 Data Aggregator

The data aggregator is the main and most important part of the entire appli-
cation. This is because it has to be highly performant to reduce the amount
of time it takes for a query to run and highly accurate to provide the correct
statistics. To achieve this I’m going to use a service called Dask which is
made up of 3 components. A scheduler distributes tasks between workers,
workers who then execute those tasks, and then a python library to interact

58

with the scheduler and workers. Dask is built on top of the most popular
data processing library for Python which is Pandas. It works by taking the
data you give it and then dividing that up into smaller Pandas data frames
running on the workers so the operations can be applied in parallel and then
collected at the end.

The first part needed is a Dask cluster which can be set up using the
docker-compose which is as simple as writing a few lines and then uploading
them to the server. Below are the settings required to run a Dask cluster.

Data Processer
dask s chedu l e r :

59

image : ” ghcr . i o /dask/dask”
r e s t a r t : ” always ”
por t s :

− ” 8787:8787 ”
− ” 8786:8786 ”

networks :
− net

command : [”dask−s chedu l e r ”]

dask worker :
image : ” ghcr . i o /dask/dask”
deploy :

mode : r e p l i c a t e d
r e p l i c a s : 4 # Sets amount o f workers

command : [”dask−worker ” , ” tcp :// dask s chedu l e r :8786 ”]
networks :

− net

Now that I have a desk cluster running I need to be able to communicate
with it using python. This is done using the Dask library as seen below.

def i n i t (s e l f , data) :
s e l f . l oad env () # Loads enviroment v a r i a b l e s
s e l f . d a s k c l i e n t = Cl i en t (s e l f . DASK SCHEDULER)
Connects to dask c l u s t e r
print (s e l f . d a s k c l i e n t . ncores ())
Prin t s i n f o about c l u s t e r to v a l i d a t e connect ion

The aggregator uses a similar structure to the data ingest module where
it loads environment variables for all of the connections like the Dask cluster
and the PostgreSQL database. Now that it is connected I need to upload
the data fetched using the data loader. This can be done in one line but
after some testing, I realised it’s not quite plug-and-play and needed a bit
of tuning. As stated before the data is broken down into lots of little data
frames but the amount of data frames depends on the size of the data you are
using so the general rule of thumb is about 10 for every 100MB of data. To
calculate the number of partitions required I had to calculate the size of the
data frame and then use that to say how many partitions. Luckily pandas
have a function which returns the size in memory of the data frame. Below

60

you can see the implementation of this which is a continuation of the code
above.

s e l f . data = data . data
s e l f . df mem = data . mem consump
Gets s i z e o f dataframe
p a r t i t i o n s = 10 i f s e l f . df mem < 100

else int (10 ∗ (s e l f . df mem % 100))
Ca l cu l a t e s amount o f p a r t i t i o n s needed
s e l f . dd d f = dd . from pandas (s e l f . data ,

n p a r t i t i o n s=p a r t i t i o n s) . p e r s i s t ()
Uploads data frame to the c l u s t e r and
p e r s i s t s i t in memory

Now that the data is uploaded to the cluster I can crack on with the
aggregation functions. To start with I created a function to remove the
outliers from the dataset as I would need to do this before all aggregations.
This also meant that it had to be as efficient as possible as it would get run a
lot. The function needed to calculate the mean of the data than the standard
deviation and then filter the data removing all data greater than the mean
plus 3 times the standard deviation.

def r e m o v e o u t l i e r s (s e l f) :
s td = s e l f . dd d f [” p r i c e ”] . s td ()
Ca l cu l a t e s s tandard d e v i a t i on
mean = s e l f . dd d f [’ p r i c e ’] . mean ()
Ca l cu l a t e s mean
f i l t e r e d d f = s e l f . dd d f \

. l o c [(s e l f . dd d f [” p r i c e ”]
< mean+(sd th r e sh ∗ std))

& (s e l f . dd d f [” p r i c e ”]
> mean−(sd th r e sh ∗ std))]

F i l t e r s database
return f i l t e r e d d f

After testing this function on a range of datasets varying in size from a
few thousand sales to a quarter million I realised that it was unbelievably
slow. It would take anywhere from 1 minute for the smaller dataset up to 25
minutes for the larger ones. After checking over my code numerous times and
asking people online in forums I realised my mistake. I had misinterpreted

61

Dask, instead of it just being a multiprocessing library for python to speed
up data aggregations it was aimed at processing humongous datasets ranging
anywhere from a couple of hundred gigabytes to terabytes. With those sorts
of datasets you’re not expecting it to be done anytime soon so you can afford
more overhead but when that overhead is applied to datasets of a much
smaller size it is completely disproportionate which results in queries taking
an unnecessary amount of time.

After realising my issue I started researching python libraries for paral-
lelised data processing and came across a library called Polars. Polars is a
library written in Rust so it is as performant as C or C++ but is much safer
when it comes to memory management and garbage collection. This makes
it a highly attractive systems programming language. Polars was designed
as a competitor to pandas which is written in pure Python so suffers from
poor performance. Below is a graph comparing the time taken to group data
and perform aggregations on it. You can see Polars is almost 2x quicker and
as the dataset scales Polars only gets quicker relative to Pandas.

Implementing Polars

Fortunately, Polars has a very similar interface to Pandas as it wanted to
be used by people who use Pandas in their everyday workflow. This meant
that implementation was a rather trivial task and it allowed me to use the
pseudo code from my design to help me. Unlike Dask Polars is designed to
run locally on your machine so a cluster is not needed. This allowed me to
remove a lot of code that was required to connect to the cluster and initialize
the dataset on it. I also had to make a slight change to the data loader as
that returned the data as a Pandas data frame since that was compatible
with Dask which was as simple as swapping ‘pd’ for ‘pl’ and using ‘import
polars as pl’ instead of ‘import pandas as pd’. Now that I was using Polars
instead of Dask I could move onto developing the code which will produce
the statistics.

Property Type Proportions

This statistic tells the user how many of each type of property is in an area
along with its corresponding proportion. To accomplish this it will have to

62

group all the sales by their property type and then return a count of each
one along with the total number of properties to calculate the proportions.
Due to the possibility of there being multiple sales for one property, it will
also have to filter out all duplicates. Once this is all done the data will be
returned as a dictionary. The code for this is below.

def c a l c t y p e p r o p o r t i o n s (s e l f) −> Dict :
df = s e l f . data # Copies dataframe to proces s
df = df . unique (subset =[” house id ”]) # F i l t e r s out

d u p l i c a t e s
df = df . groupby (” type ”) . count () # Gets count o f

each proper ty type
data = df . t o d i c t (a s s e r i e s=False) # Converts

r e s u l t s to a d i c t
return data

It was then tested by fetching the data for the ‘CH‘ area and then passing
it to be aggregated. Below is the code for this.

import psycopg2
import time

s t a r t = time . time ()
conn = psycopg2 . connect (”<DATABASE URI>”) # Connects to

database
data l oade r = Loader (”CH” , ” area ” , conn . cu r so r ()) #

Fetches s a l e s f o r area
print (” loaded data = ” + time . time ()−s t a r t)

agg = Aggregator (da ta l oade r) # Passes s a l e s to
agg rega to r

r e s = agg . c a l c t y p e p r o p o r t i o n s () # Ca l cu l a t e s
p ropor t i ons

print (r e s) # Prin t s r e s u l t s

Below is a screenshot showing the output after running this code. It
shows it was able to successfully output the proportions for this area along
with the total amount of properties.

63

Monthly Average Price

This is one of my key statistics as it gave a view of the property market on
a month-by-month basis. It would calculate the mean price of house sales
each month for all property types and then for each individually. By doing
this I allow the users to get a more tailored look at the data for their needs.
I’ll accomplish this by first splitting the data into their respective types and
then sorting the sales by date. These sales will then be grouped by month
and the mean will then be calculated. This will be repeated for each house
type and then the same will be done for all house types at once. Below is
the code for this.

def c a l c a v e r a g e p r i c e (s e l f) −> Dict :
df = s e l f . data . p a r t i t i o n b y (” type ” , a s d i c t=True)
Sp l i t s data in t o separa t e proper ty t ype s

house types means = {}
for house type in df :

temp df = df [house type]
house types means [house type] = temp df \

. s o r t (” date ”) \
Sor t s s a l e s
. groupby dynamic (” date ” , every=”1mo”) \
Groups s a l e s in t o months
. agg (p l . c o l (” p r i c e ”) . mean ()) \
Ca l cu l a t e s the mean
. t o d i c t (a s s e r i e s=False)
Converts i t to d i c t

a l l s a l e s = s e l f . data
house types means [” a l l ”] = a l l s a l e s \

. s o r t (” date ”) \

. groupby dynamic (” date ” , every=”1mo”) \

. agg (p l . c o l (” p r i c e ”) . mean ()) \

. t o d i c t (a s s e r i e s=False)

64

data = {
” type ” : [key for key in sorted (

house types means)] ,
Li s t a l l p roper ty t ype s a l p h a b e t i c l y
” p r i c e s ” : [house types means [key] [” p r i c e ”] for

key in sorted (house types means)] ,
Li s t a l l average p r i c e s corresponding order

to proper ty t ype s
” dates ” : house types means [” a l l ”] [” date ”]
Li s t a l l o f the da te s

}
return data

I tested this using the same area as the proportions function so the testing
code was the same except instead of calling ‘calc type proportions’ I called
‘calc average price’. Unfortunately, the output for this is rather long so I
can’t show it below as it shows the average sale price for every month since
1995 for every property type. To see if my results were correct I compared
the most recent points against the Land Registry Price Index which can be
found here https://landregistry.data.gov.uk/app/ukhpi. When I compared
the numbers I realised my results were all quite a bit higher than the Land
Registry’s.

My initial conclusion was I hadn’t removed the outliers from the dataset.
I had implemented this before with Dask so switching to Polars was a breeze
due to how similar they are.

s td = a l l s a l e s . s e l e c t (p l . c o l (” p r i c e ”)) . s td () .
c o l l e c t () [0 , 0]

mean = a l l s a l e s . s e l e c t (p l . c o l (” p r i c e ”)) . mean ()
. c o l l e c t () [0 , 0]

temp df = a l l s a l e s . f i l t e r ((p l . c o l (” p r i c e ”) <
mean+(2∗ std)))

After implementing this I again tested it but the results were still off from
the House Price Index. I then did some reading on the Office for National
Statistics website as they publish how they calculate the HPI. There they
stated that instead of using the arithmetic mean they use the harmonic
mean which helps reduce the effect large sales have on the average. The

65

harmonic mean can be calculated by multiplying all of the items together
and then finding the nth route where n is equal to the number of items in
the list. After doing some further reading on it I realised that the numbers
can quite easily get out of hand, for example, house sales are in the hundreds
of thousands so each time I multiply them together I am increasing the
product by 100000 each time which when done 10,000 times produces a very
large number potentially causing it to overflow which would then crash the
programme this. To combat this people recommend using log rules to find
the mean as it can be done more efficiently.
x ∗ x = logx + logx
x1/y = logx/logy

Using these two rules above I can calculate the harmonic mean by getting
the log of all the values and calculating the arithmetic mean of them and then
doing ex where x is the result of the arithmetic mean. This is implemented
below in Polars.

house types means [house type] = temp df \
. s o r t (” date ”) \ # Sort s a l e s by date
. groupby dynamic (” date ” , every=”1mo”) \ # Group by

month
. agg (

p l . c o l (” p r i c e ”) \
. l og () \ # Log o f a l l v a l u e s
. mean () \ # Ari thmet ic mean
. exp () # eˆx o f r e s u l t

) \
. t o d i c t (a s s e r i e s=False) # Convert to d i c t

I then tested this and got results that were within a few thousand of
the Land Registries. I put the error down to the Land Regsitry including
Scottish property sales which aren’t included in my data.

Quantity & Volume

These two statistics are very similar and are hence calculated in a very similar
manner. The structure of the code will also look very similar to the monthly
average price as these are calculated for each property type and then for
all types and it is done on a month-by-month basis. Polars had an inbuilt
method for count and sum so I can copy the code for the average and simply

66

change the aggregation function for each one. The function will be the same
for each one minus a few variable name changes so for brevity I’ll just show
what the line will be for volume and quantity.

For s a l e quan t i t y
. agg (p l . c o l (” p r i c e ”) . count ())

For pr i c e volume
. agg (p l . c o l (” p r i c e ”) .sum())

Since the Land Registry doesn’t publish these statistics and I couldn’t
find anywhere that did I will just have to assume that the code works based
on the output I received since I have nothing to compare it to. Also since the
average code works and these share a lot of the same code it would be logical
to assume they also work. Similarly to the average function the output of
this is a long list of numbers so I don’t see much point in showing the output
for each one.

Quick Stats

To give the user a brief and up-to-date view of an area at the top of the page
will be the most recent figure for each statistic along with how it compares
to the previous month. To do this I will need to get the most recent number
off the top of each list and the second most recent. The percentage change
will then be calculated by dividing the most recent by the oldest. Once I
have the percentage change and the most recent figure they will be added to
a dictionary. The dictionary will be laid out as shown below.

{
” current month ” : 0 ,
” a v e r a g e p r i c e ” : 0 ,
” average change ” : 0 ,
” c u r r e n t s a l e s v o l u m e ” : 0 ,
” sa l e s vo lume change ” : 0 ,
” cu r r en t p r i c e vo lume ” : 0 ,
” pr i ce vo lume change ” : 0 ,
” e x p e n s i v e s a l e ” : 0

}

To get all of these values I will need to have already run all of the other

67

aggregations. Once they have been run I will then go through each one doing
the aforementioned. The code for this is below. It will also find the most
expensive sale for the current month. To do this will has to filter the sales
to only ones from this month. Then it searches the sales to find which one
has a value equal to the greatest value in the table. This will be the most
expensive sale of the month

def q u i c k s t a t s (s e l f , data) −> Dict :
current month = data [” a v e r a g e p r i c e ”] [” dates ”] [−2]
Gets the current month
cu r r en t ave rage = data [” a v e r a g e p r i c e ”] [” p r i c e s ”

] [4] [− 2]
Gets the most recen t average
prev average = data [” a v e r a g e p r i c e ”] [” p r i c e s ”

] [4] [− 3]
Gets second most recen t average
cur r ent ave rage change = round (100∗ (cur rent average

−prev average) / prev average , 2)
Ca l cu l a t e s the percentage change to 2 decimal

p l a c e s

c u r r e n t s a l e s v o l = data [” monthly sa les vo lume ”] [”
volume”] [4] [− 2]

Gets most recen t s a l e volume
p r e v s a l e s v o l = data [” monthly sa les vo lume ”] [”

volume”] [4] [− 3]
Gets second most recen t s a l e s volume
c u r r e n t s a l e s v o l c h a n g e = round (100∗ (

c u r r e n t s a l e s v o l −p r e v s a l e s v o l) / p r e v s a l e s v o l
, 2)

Ca l cu l a t e s the percentage change to 2 decimal
p l a c e s

c u r r e n t p r i c e v o l = data [” monthly pr ice volume ”] [”
volume”] [4] [− 2]

Gets most recen t p r i c e volume
p r e v p r i c e v o l = data [” monthly pr ice volume ”] [”

68

volume”] [4] [− 3]
Gets second most recen t p r i c e volume
c u r r e n t p r i c e v o l c h a n g e = round (100∗ (

c u r r e n t p r i c e v o l −p r e v p r i c e v o l) / p r e v p r i c e v o l
, 2)

Ca l cu l a t e s the percentage change to 2 decimal
p l a c e s

e x p e n s i v e s a l e = (s e l f . data
. f i l t e r (p l . c o l (” date ”) . i s be tween (current month

, current month + t imede l ta (days=31)))
F i l t e r s s a l e s to t h i s month
. f i l t e r (p l . c o l (” p r i c e ”) == pl . c o l (” p r i c e ”) .max

())
Searches f o r s a l e wi th maximum pr i c e
) [0 , 0]

Puts r e s u l t s i n t o a d i c t i ona r y to be re turned
q u i c k s t a t s = {

” current month ” : current month ,
” a v e r a g e p r i c e ” : cur rent average ,
” average change ” : cur rent average change ,
” c u r r e n t s a l e s v o l u m e ” : c u r r e n t s a l e s v o l ,
” sa l e s vo lume change ” : c u r r e n t s a l e s v o l c h a n g e

,
” cu r r en t p r i c e vo lume ” : c u r r e n t p r i c e v o l ,
” pr i ce vo lume change ” : c u r r e n t p r i c e v o l c h a n g e

,
” e x p e n s i v e s a l e ” : e x p e n s i v e s a l e

}
return q u i c k s t a t s

I tested this code using the area I’ve been using for all the other tests
and it worked perfectly. Below are the results of this test, the error message
is simply a warning that can be ignored.

69

After this success, I then decided to test it on some other areas so I put
my postcode in to get some results. I encountered an IndexError when I ran
this test. After doing some investigating I realised it was because areas with
fewer sales might not have any sales for this month so when it goes to fetch
the most recent average it isn’t there as there have been no sales in that
month. Below you can see the error message for this.

To remediate this error I added try statements around the bits of code
where it fetches the most recent stats. These allowed me to catch the In-
dexErrors and then set the values to zero as a default. The code for this is
below.

try :
c u r r e n t s a l e s v o l = data [” monthly sa les vo lume ”] [”

volume”] [4] [− 2]
p r e v s a l e s v o l = data [” monthly sa les vo lume ”] [”

volume”] [4] [− 3]
c u r r e n t s a l e s v o l c h a n g e = round (100∗ (

c u r r e n t s a l e s v o l −p r e v s a l e s v o l) / p r e v s a l e s v o l
, 2)

except IndexError :
c u r r e n t s a l e s v o l = 0
c u r r e n t s a l e s v o l c h a n g e = 0

try :
c u r r e n t p r i c e v o l = data [” monthly pr ice volume ”] [”

volume”] [4] [− 2]

70

p r e v p r i c e v o l = data [” monthly pr ice volume ”] [”
volume”] [4] [− 3]

c u r r e n t p r i c e v o l c h a n g e = round (100∗ (
c u r r e n t p r i c e v o l −p r e v p r i c e v o l) / p r e v p r i c e v o l
, 2)

except IndexError :
c u r r e n t p r i c e v o l = 0
c u r r e n t p r i c e v o l c h a n g e = 0

Now the quick stats function will work for any area I give it and if there
is any missing data it will return zero as the value by default.

Run Function

This function is what ties all the other functions together and then returns
the data. The data will be returned as a dictionary. There isn’t much to this
function as it simply calls the functions and then stores the returned values
in a dictionary.

def g e t a l l d a t a (s e l f) −> Dict :
data = {

” a v e r a g e p r i c e ” : s e l f . c a l c a v e r a g e p r i c e () ,
” type p ropo r t i on s ” : s e l f . c a l c t y p e p r o p o r t i o n s

() ,
” monthly sa les vo lume ” : s e l f .

ca lc monthly vo lume () ,
” monthly pr ice volume ” : s e l f .

c a l c month ly pr i c e vo lume () ,
}
data [” q u i c k s t a t s ”] = s e l f . q u i c k s t a t s (data)
Passes ag g r e ga t i on s to qu i ck s t a t s f unc t i on s

return data

There isn’t much need to test this function as long as all the other func-
tions have been tested and are in working order this one will work fine. Now
that all of the aggregations have been programmed I can move on to inte-
grating it with Kafka to receive jobs.

71

Code Layout

3.2.3 Intergrating With Kafka

To analyse areas effectively the processing needs to be detached from the
webserver. This will prevent the web server from getting clogged up with
requests and stop anyone else from accessing the website. Instead, the user
sends a request to analyse an area and then they are given a link to check
if it has been processed or not. To implement this I need to create a Kafka
client which can check the database to see if an area has been cached or not;
check if that cache is out of date; load data using the ‘loader’; a process that
data using the ‘aggregator’ and then update the cache.

Firstly I need to create the init function to connect to the database
and Kafka. This will be very similar to the other modules so I won’t go into
detail about it. It will also need to load the credentials for the databases
from environment variables which will be a function. Below is the code for
both of these.

def i n i t (s e l f) :
s e l f . l oad env ()
s e l f . s q l c o n n = psycopg2 . connect (f ” p o s t g r e s q l ://{

s e l f . SQL USERNAME} :{ s e l f . SQL PASSWORD}@{ s e l f .
SQL HOST} :5432/ house data ”)

Connect to the SQL database

72

s e l f . cu r = s e l f . s q l c o n n . cu r so r ()

s e l f . mongo conn = MongoClient (f ”mongodb ://{ s e l f .
MONGO USERNAME} :{ s e l f . MONGO PASSWORD}@{ s e l f .
MONGO HOST} :27017/? authSource=house data ”)

Connect to MongoDB fo r caching
s e l f . mongo db = s e l f . mongo conn [” house data ”]

s e l f . consumer = Consumer ({
’ boots t rap . s e r v e r s ’ : s e l f . KAFKA,
’ group . id ’ : ’PROCESSOR’ ,
’ auto . o f f s e t . r e s e t ’ : ’ e a r l i e s t ’

})
Connect to Kafka

def l oad env (s e l f) :
Loads the enviroment v a r i a b l e s
s e l f . DB = os . env i ron . get (”DBNAME”)
s e l f . SQL USERNAME = os . env i ron . get (”POSTGRES USER”

)
s e l f . SQL PASSWORD = os . env i ron . get (”

POSTGRES PASSWORD”)
s e l f . SQL HOST = os . env i ron . get (”POSTGRES HOST”)
s e l f . KAFKA = os . env i ron . get (”KAFKA”)
s e l f . MONGO HOST = os . env i ron . get (”MONGO HOST”)
s e l f . MONGO USERNAME = os . env i ron . get (”

MONGOUSERNAME”)
s e l f . MONGO PASSWORD = os . env i ron . get (”

MONGOPASSWORD”)

Now that the boilerplate code has been set up I can start developing
the first of the key functions which is the cache checker. This will work by
generating the query ID based on the area and area type. These will then
be used to search mongoDB. If a result is found it will then check if it is out
of date or not. If it is out of date it will return False and if it isn’t it will
return True. If no result is found at all it will return False.

To generate the query ID the area and area type will simply be concate-
nated together and have any spaces removed. I’ll create a function for this

73

as I will be performing it a lot throughout the process. The code for this is
below

def c a l c q u e r y i d (s e l f , area : str , a r ea type : str) −>
str :

que ry id = (area + area type) . r e p l a c e (” ” , ””)
concatenate s t r i n g s and remove spaces
return query id # Return r e s u l t

Input Expected Actual
CHESTER, TOWN CHESTERTOWN CHESTERTOWN

CH2 1DE,
POSTCODE

CH21DEPOSTCODE CH21DEPOSTCODE

CH, AREA CHAREA CHAREA
Now that I can generate the query id to search and have tested it using

the table above I need to be able to get the date the dataset was last updated.
This will be done using SQL as the update checker module writes the date
and time it is updated to the database. If there is no date recorded in the
database or an incorrect date provided it will return 01/01/1970 00:00:00
so that it will be forced to update the cache no matter what. To fetch the
date from the database I will use a fairly basic SELECT SQL query which
is below.

”SELECT ∗ FROM s e t t i n g s WHERE name =’ las t updated ’ ”

The SQL query will return a UNIX timestamp which is an integer rep-
resenting the number of seconds since 01/01/1970 00:00:00. This will then
need to be converted into a python datetime object so that I can perform
comparisons with it. Putting this together with the SQL the code will look
like this.

def g e t l a s t u p d a t e d (s e l f) :
s e l f . cu r . execute (”SELECT ∗ FROM s e t t i n g s WHERE

name = ’ l a s t updated ’ ”)
l a s t updated = s e l f . cu r . f e t chone ()
Fetch timestamp from database

i f l a s t updated == None :
return datet ime . fromtimestamp (0)
Return d e f a u l t time i f no timestamp found

74

else :
i f l a s t updated [1] i s not None :

return datet ime . fromtimestamp (f loat (
l a s t updated [1]))

conver t timestamp to date t ime o b j e c t
else :

return datet ime . fromtimestamp (0)
Return d e f a u l t time i f i n v a l i d timestamp

I tested this code too by changing the value in the database and checking
to see if it corresponded with the date returned and as you can see in the
table below it worked.

Database Value Expected Actual
1680284312 31 03 2023 17:38:32

GMT+0000
31 03 2023 17:38:32

GMT+0000
1230454412 28 12 2008 08:53:32

GMT+0000
28 12 2008 08:53:32

GMT+0000
wu3gbk.qwjf 01 01 1970 00:00:00

GMT+0000
01 01 1970 00:00:00

GMT+0000
Nothing 01 01 1970 00:00:00

GMT+0000
01 01 1970 00:00:00

GMT+0000
Now that I have both of these functions working I can start programming

the function to check the cache. It’s quite a simple function and only consists
of a few lines, generating id; searching the database and compare dates.
Below is the code for this.

def check cache (s e l f , area , a r ea type) −> bool :
que ry id = s e l f . c a l c q u e r y i d (area , a r ea type)
Generate query id
query = s e l f . mongo db . cache . f i nd on e ({ ” i d ” :

query id })
Search database f o r cached query
i f query i s not None :

l a s t updated = s e l f . g e t l a s t u p d a t e d ()
Get date o f l a s t updated
i f query [” l a s t updated ”] < l a s t updated :

Compare da te s
return False # Isn ’ t in cache

return True # Is in cache

75

else :
return False # Isn ’ t in cache

Unfortunately, I won’t be able to properly test this code till there are
queries that have been cached so I will have to come back and test this
later once I have developed more of this. Now I can develop the function to
load the data and then aggregate it so it can then be cached. This function
will simply be calling the loader module and then pass that data into the
aggregator module. Each part will be timed so that I can evaluate it against
my success criteria. Firstly it will load the data using the loader module so
the function for this is below.

def g e t a r e a d a t a (s e l f , area : str , a r ea type : str) :
l od r = Loader (area , area type , s e l f . cu r)
Pass area d e t a i l s and database cursor to l oader
return l od r

Once the data is loaded it will then need to be aggregated using the
function below.

def g e t a g g r e g a t i o n (s e l f , l oade r : Loader) −> Dict :
agg = Aggregator (l oade r) # In i t agg rega tor
data = agg . g e t a l l d a t a () # Run agg r e ga t i on s
return data

Now both of these functions will be tied together along with some logic to
time each part and save it to a variable to be written to the database later.
The code for this function is below.

def g e t s t a t s (s e l f , area : str , a r ea type : str) −> bool
:

l o a d s t a r t = time . time () # Sta r t t imer
data = s e l f . g e t a r e a d a t a (area , a r ea type)
Load data
l oad t ime = time . time ()− l o a d s t a r t # End timer

i f data i s not None :
s t a r t = time . time () # Sta r t t imer
s t a t s = s e l f . g e t a g g r e g a t i o n (data) # Aggregate
t ime taken = time . time ()−s t a r t # End timer

76

query id = s e l f . c a l c q u e r y i d (area , a r ea type)
Generate ID

s e l f . cache query (s ta t s , query id , area ,
area type , t ime taken , l oad t ime)

Save query to cache
return True

else :
return False

This function won’t be able to be tested since it uses the ‘ cache query()’
function which hasn’t been written yet so it will all be tested together.

Now moving on to the query caching function. This function will need to
take all of the data and statistics and then store them in the database. Data
is stored in MongoDB in the BSON format which is essentially the same as
JSON except it is slightly more performant and better for databases. Each
entry is called a document and will be laid out like this.

{
” i d ” : query id ,
” area ” : area ,
” a rea type ” : area type ,
” data ” : s t a t s ,
” l a s t updated ” : datet ime . now () ,
” exec t ime ” : exe t ime ,
” load t ime ” : l oad t ime

}

If a query has already been cached but is out of date the document will
need to be updated instead of simply inserting it. This is done by using
the $set function which allows you to modify the properties of an existing
document. The code for this is quite long but is only one of two functions
being called depending on the scenario.

def cache query (s e l f , s t a t s : Dict , que ry id : str , area
: str , a r ea type : str , exe t ime : f loat , l oad t ime :
f loat) :

query = s e l f . mongo db . cache . f i nd on e ({ ” i d ” :
query id })

Check cache f o r e x i s i t i n g document
i f query i s not None :

77

s e l f . mongo db . cache . update one (
{” i d ” : que ry id } ,
{” $ s e t ” : {

” data ” : s t a t s ,
” l a s t updated ” : datet ime . now () ,
” exec t ime ” : exe t ime ,
” load t ime ” : l oad t ime
}

}
)
Updated e x i s i t i n g document

else :
document = {

” i d ” : query id ,
” area ” : area ,
” a rea type ” : area type ,
” data ” : s t a t s ,
” l a s t updated ” : datet ime . now () ,
” exec t ime ” : exe t ime ,
” load t ime ” : l oad t ime

}
s e l f . mongo db . cache . i n s e r t o n e (document)
Ins e r t new document

Now that I have the caching function written I can test all the other
functions. This will be done by giving it different areas and then seeing if
they are added to the MongoDB database and then trying to analyse them
and seeing it not process them as they are cached. Afer that I will then
modify the date of one and get it to update them.

p r o c e s s o r = Proces sor ()
i f not s e l f . check cache (area , a r ea type) :

print (query , ”− Aggregating data ”)
s e l f . g e t s t a t s (area , a r ea type)

else :
print (”Cache h i t)

The images below are from after running the test initially and as you can

78

see it successfully inserted them into the database.

I then ran the same test again and got his printout in the terminal showing
that it was able to detect the documents in the cache so didn’t process them
again.

I then manually edited the date on the first one to be before the last
update.

The image below is the result of running the script again and as you can
see it updated and changed the date.

79

All of these tests conclude that the caching and processing part is fully
functional. Now all I need to do is programme the Kafka client so it can
receive jobs and execute them. Fortunately, I have already done this for the
sales ingest module so I can borrow some of the code from there to make it
easier. It will need to recieve the message; decode it to the area and area
type and then pass these onto the other functions to analyse and then cache
if needed. The code for this is below.

def main loop (s e l f) −> None :
s e l f . consumer . s u b s c r i b e ([” query queue ”])
Subscr i b e to job queue
print (”Waiting f o r q u e r i e s ”)
while True :

msg = s e l f . consumer . p o l l (1 . 0) # Fetches the
l a t e s t message from ka fka

i f msg i s None : # Checks the message i s empty
continue

i f msg . e r r o r () : # Checks t h e r e are no e r ro r s
print (”Consumer e r r o r : {}” . format (msg . e r r o r

()))
continue

query : tuple = loads (msg . va lue ()) # (area ,
a r ea t ype)

80

query = tuple (map(lambda x : x . upper () , query))
Makes a l l i tems upper case

print (f ”{ time . time () } − {query [0] } ({ query [1] }) ”
)

i f not s e l f . check cache (∗ query) : # Checks
cache
print (query , ”− Aggregating data ”)
s e l f . g e t s t a t s (∗ query) # Gets s t a t s

else :
print (query , ”− Cache h i t ”)
continue

As you can see this is very similar to the sales ingest module with its
layout. One of the features I added is to make all of the letters in the query
uppercase to make sure that they are all stored in uppercase so that there
are no duplicates for validity. To test this I will have to make a short script
to send jobs along this Kafka queue.

l i s t b y t e s = dumps ((”CH” , ”AREA”)) # Converts
l i s t to by t e array

s e l f . producer . produce (” new sa l e s ” , l i s t b y t e s)
Send each s a l e as s t r i n g to ka fka

s e l f . producer . p o l l (0) # Wait f o r message to
send

I made sure to run the aggregator and then run this script. The result of
this script is below.

As you can see it was able to successfully receive the job and then aggre-

81

gated it and store the results in the cache. The aggregator completely works
now and can be integrated into the web API once that is built. Fortunately,
due to the design of the aggregator, new statistics can be added by simply
adding another aggregation function to the aggregator class and editing the
dictionary to include it. This will allow me to improve upon it in the future
and add features requested by my stakeholders. Below is the code for the
Kafka client and caching functions.

3.3 Web API

To allow for the retrieval of data and the ability to search it I will be using an
HTTP API. This will be developed using the Flask library for python which
is a lightweight webserver framework. Flask has a do-it-yourself methodology
where it comes with the essential features and you build everything else you
need. This allows it to be super compact and simple but can grow to be used
in large applications if done correctly. To do this you need to plan out what

82

API routes your going to have and have a well-thought-out file structure so
the application is modular and can be easily expanded in the future.

3.3.1 Planning

For my Flask application, I will be using a file structure which is quite com-
mon among flask applications and one that I have used before. It will look
like the diagram below.

f l a s k a p p
app

i n i t . py
main

i n i t . py
route s . py

pos t s
i n i t . py

route s . py
que s t i on s

i n i t . py
route s . py

c o n f i g . py

This structure will allow me to use a flask feature called blueprints which
allows for greater modularity. They work by having their separate file which
contains all the routes for that section. This file can then be imported into the

init .py where it is added to the main flask instance and can be customised.
For example, you can set a URL prefix for all routes in a blueprint or set
authentication for all of those routes. In my case, I will only use one blueprint
as I don’t have many routes and they all come under the same category.

3.3.2 Boilerplate Code

There is some code that all Flask projects will have like the configuration file
where all environment variables are stored and the init .py file where the
flask app is initiated and the blueprints are imported into. When passing
config to Flask it requires it in an object format where each environment
variable is an attribute. Below is this.

83

import os

class Config :
SECRET KEY = os . env i ron . get (’SECRET KEY ’)
SQL USER = os . env i ron . get (”DB USER”)
SQL PASSWORD = os . env i ron . get (”DB PASSWORD”)
SQL HOST = os . env i ron . get (”DB HOST”)
KAFKA = os . env i ron . get (”KAFKA”)
MONGO HOST =os . env i ron . get (”MONGO HOST”)
MONGO USER = os . env i ron . get (”MONGO USER”)
MONGOPASSWORD = os . env i ron . get (”MONGOPASSWORD”)

Now that I have a configuration file I can write the init .py file. This
will contain the flask instance and is where all of the database or Kafka
connections will be handled.

import psycopg2
from c o n f i g import Config
from c o n f l u e n t k a f k a import Producer
from f l a s k import Flask , current app
from pymongo import MongoClient

def c rea te app (c o n f i g c l a s s=Config) −> Flask :
app = Flask (name) # I n i t i a l i z e s f l a s k app
app . c o n f i g . f r om ob jec t (c o n f i g c l a s s) # Imports

c on f i g to f l a s k app

ka fka producer = Producer ({ ” boots t rap . s e r v e r s ” : app
. c o n f i g [”KAFKA”] })

Connects to ka fka
mongo db = MongoClient (f ”mongodb ://{ app . c o n f i g [’

MONGO USER ’] } : { app . c o n f i g [’MONGOPASSWORD ’]}@{
app . c o n f i g [’MONGO HOST ’]} : 2 7017/? authSource=
house data ”)

Connects to mongoDB
sq l db = psycopg2 . connect (f ” p o s t g r e s q l ://{ app .

84

c o n f i g [’ SQL USER ’] } : { app . c o n f i g [’SQL PASSWORD ’]}
@{app . c o n f i g [’SQL HOST ’]} : 5 4 3 2 / house data ”)

Connects to PostgreSQL

with app . app context () :
Stores connec t ions in app con t e x t
current app . ka fka producer = kafka producer
current app . mongo db = mongo db . house data
current app . sq l db = sq l db

from app . api import bp as api bp # Imports
b l u e p r i n t

app . r e g i s t e r b l u e p r i n t (api bp , u r l p r e f i x=”/ api /v1”
)

Adds b l u e p r i n t to f l a s k app

return app

Reading the code above you may be wondering what the app context
is. This allows the database connections to be accessed from anywhere in
the app even if they’re in a completely different file. This means that each
blueprint doesn’t need its connections and they can all be managed centrally
here.

The last bit of boilerplate code is for the API blueprint init .py file
which simply initializes the bluprint and imports the routes from the routes.py
file like this

from f l a s k import Bluepr int

bp = Bluepr int (” api ” , name)
I n i t i a l i z e s b l u e p r i n t

from app . api import route s
Imports rou t e s

85

3.3.3 Routes

Now that all the boilerplate code is done I can get started on the routes.
These are the HTTP paths that the user will go to fetch the data. My app
will consist of 6 routes. The first one I will work on is the route to analyse
an area.

Analyse Area

To create an analysis job for the data processors it will need to send a message
in the Kafka topic. Once this message has been sent it will then need to return
a URL with the query id for the user to access the results. The route will
take two arguments the area and area type. These will be passed in the url as
the path e.g. /CH/AREA, /CHESTER/TOWN. These will then be pickled
into bytes to be sent via Kafka. The code for this is below.

@bp . route (”/ ana lyse/< s t r i n g : area type>/<s t r i n g : area>”)
Take area and area type as arguments from the path
def index (area type , area) :

data = dumps ((area . upper () , a r ea type . upper ()))
Pick l e the area and area type in t o b y t e s

The area and area type are set to upper case for validation. Now that the
job is ready to send it needs to access the app context to send it via Kafka.
This is done using a with statement. I also added the same logic from the
update checker where it will retry the message until it sends waiting for
validation. The code for this is below which is a continuation of the above.

with current app . app context () : # Access app
con t e x t
while True :

try :
print (” Sending query ”)
current app . ka fka producer . produce (”

query queue ” , data) # Send each
s a l e as s t r i n g to ka fka

current app . ka fka producer . p o l l (0) #
Wait f o r message to send

break
except Buf f e rEr ro r :

86

current app . ka fka producer . f l u s h () #
Flush b u f f e r i f f a i l e d

Now that it has sent the job it needs to return a URL. This URL will
contain the query id so when someone goes to it they will be able to see if
the job is done and if it is they will get the results. It will be returned in
JSON format. Below is the code for this.

que ry id = (area + area type) . r e p l a c e (” ” , ””) .
upper ()

return j s o n i f y (
s t a t u s=”ok” ,
query id=query id ,
r e s u l t=f ” https : // api . house s ta t s . co . uk{ u r l f o r (’

ap i . f e t c h r e s u l t s ’ , que ry id=query id)}”
)

The url for function allows me to automatically link to the function I
want even if I change the path for it. To test this I ran the data processor
and the web server at the same time. I know if the results for my query
appear in the database after my request it has worked.

87

You can see in the two images above that it was able to successfully send
the job which then ran and stored the results in the database.

Now I need to write the route to check if the results are in the database
and then fetch them if they are. This will simply consist of a mongoDB
query to search the database. It will also need to get the date the data was
last updated so it knows that even if there is data in the cache it will be
overwritten once the job has been completed so don’t return it. The code for
this is the same as the data aggregator except it uses the app context.

def g e t l a s t u p d a t e d () :
cur = current app . sq l db . cu r so r ()
Get SQL connect ion from app con s t e x t
cur . execute (”SELECT ∗ FROM s e t t i n g s WHERE name = ’

l a s t updated ’ ; ”)
Get timestamp o f l a t e s t update
l a s t updated = cur . f e t chone ()
i f l a s t updated == None :

return datet ime . fromtimestamp (0)
else :

i f l a s t updated [1] i s not None :
return datet ime . fromtimestamp (f loat (

l a s t updated [1]))
Convert timestamp to date t ime o b j e c t

else :
return datet ime . fromtimestamp (0)

Now that I have this function copied over and edited I can write the route.

@bp . route (”/ f e t c h/< s t r i n g : query id>”)
Take query id as argument
def f e t c h r e s u l t s (query id) :

with current app . app context () : # Connect to app
con t e x t

query = current app . mongo db . cache . f i nd on e ({ ”
i d ” : que ry id . upper () })

Search cache f o r query
i f query i s not None :

i f query [” l a s t updated ”] > g e t l a s t u p d a t e d
() :

88

Check i f cache i s outdated
return j s o n i f y (

r e s u l t s=query ,
outdated=False ,
done=True
)

else :
Return i f query outdated
return j s o n i f y (

outdated=True ,
done=False

)
else : # Return i f query outdated

return j s o n i f y (
outdated=False ,
done=False

)

To test this I used the same area as before and went to that URL the re-
sults are below. To test the other scenarios I first changed the date manually
to make it out of date and tested then I deleted it from the database to test
it. The results are below.

89

As you can see from the results it performed as expected and passed all
the tests.

3.3.4 Searching For Areas

This is quite a key feature for useability as it gives the user suggestions for
areas they are searching for as they type which will making searching a lot
easier as they don’t have to keep attempting to type somewhere hoping it
is correct. It will work by taking the query string in as an argument. It
will then create an SQL query to search the area table for any matching
ones. Once it gets the results these will then be returned to the user. The
SQL query will use a full-text search index that has been created which will
greatly improve the speed of searching. The query will look like this.

90

SELECT area , a rea type
FROM areas WHERE subs t r (area , 1 , 50)
LIKE ’{query}% ’
ORDER BY char l eng th (area)
LIMIT 10 ;

The ‘LIKE’ keyword is the key part of this and is what allows me to
search using parts of an areas name. I also don’t want to return more than
10 results as that would take up a lot of room on the screen and it would
take significantly longer to load ruining the user experience. Implementing
the SQL query with python would look like this below.

@bp . route (”/ search/< s t r i n g : query>”)
def s e a r c h a r e a (query) :

query = u r l l i b . parse . unquote (query) . upper ()
Decode URL sa f e charac t e r s l i k e %20 fo r spaces

s q l q u e r y = f ”””SELECT area , a rea t ype
FROM areas WHERE sub s t r (area , 1 , 50)
LIKE ’{ query}%’
ORDER BY cha r l en g t h (area)
LIMIT 10; ”””

Generate query wi th the query s t r i n g

with current app . app context () :
Create app con t e x t
cur = current app . sq l db . cu r so r ()
cur . execute (s q l q u e r y)
Execute SQL query
r e s u l t s : L i s t [Tuple [str , str]] = cur . f e t c h a l l ()
Store r e s u l t s

Now that the results have been fetched they need to be returned to the
user. This will be done in JSON format like below.

i f len (r e s u l t s) > 0 :
Check i f t h e r e are any r e s u l t s

return j s o n i f y (
r e s u l t s=r e t u r n l i s t ,

91

found=True
) # Return search r e s u l t s

else :
return j s o n i f y (

r e s u l t s=None ,
found=False

) # Return i f no r e s u l t s

You can see in the image below after running it can successfully return
suggestions for the search query ‘CH’.

92

One issue I noticed when searching for ‘Che’ for Chester is I got street
names first and then the city name. When people are searching it is unlikely
they’ll be searching for a street so I need to put the other area types above

93

To fix this I will sort the results by their area type in size decreasing
order. I will do this using the inbuilt sort function in Python and use a key
to get the order I want.

SORT ORDER = {” area ” : 1 , ” outcode ” : 0 , ” s e c t o r ” : 2 , ”
postcode ” : 3 , ”town” : 4 , ” county ” : 5 , ” d i s t r i c t ” : 6 ,
” s t r e e t ” : 7}

Key to s e t s o r t order
r e t u r n l i s t . s o r t (key=lambda va l : SORT ORDER[va l [1] .

lower ()] , r e v e r s e=True)

94

Sor t s l i s t us ing key

You can see in the image above it put the towns before the street names.
This will make it easier for the user when searching. After finishing this I
realised I will also need to use the search function when looking up houses.
For this, though I only want to search postcodes so I will need to add a way
of filtering the search. To do this i will check to see if a filter argument has
been passed to the URL. If it has i will modify the SQL query to only search
for the area type specified in the filter argument.

q u e r y f i l t e r = reques t . a rgs . get (” f i l t e r ”) # Check f o r
f i l t e r argument

i f q u e r y f i l t e r i s not None :
i f q u e r y f i l t e r in [” postcode ” , ” s t r e e t ” , ”town” , ”

d i s t r i c t ” , ” county ” , ” outcode ” , ” area ” , ” s e c t o r ”
] :
Val ida t e i t i s a co r r e c t area type

s q l q u e r y = f ”””SELECT area , a rea t ype
FROM areas WHERE sub s t r (area , 1 ,

50)
LIKE ’{ query}%’ AND area type = ’{

q u e r y f i l t e r } ’
ORDER BY cha r l en g t h (area)
LIMIT 10; ”””

Edit SQL query to on ly search f o r t ha t type
else :

return abort (404) # Return 404 i f not v a l i d
type

95

else : # Act as normal i f no f i l t e r passed
s q l q u e r y = f ”””SELECT area , a rea t ype

FROM areas WHERE sub s t r (area , 1 , 50)
LIKE ’{ query}%’
ORDER BY cha r l en g t h (area)
LIMIT 10; ”””

I then tested it by only searching for postcodes and the result is below.
As you can see it was successful in only searching the postcodes and no other
area type.

3.3.5 House Lookup

My other feature as mentioned in the search section is the ability to look up
a specific house and see all of its previous sales. The user will first search
the postcode and then they will be given a list of all of the houses in this
postcode which they can then click on to view a specific house. Firstly I will

96

need to write a route to get all of the houses in a given postcode. This will
be quite simple as it uses one SQL query with a join to get all the houses
from a postcode. The SQL query looks like this.

SELECT h . type , h . paon , h . saon , h . postcode , p . s t r e e t , p .
town , p . county
FROM postcodes AS p
INNER JOIN houses AS h ON p . postcode = h . postcode

AND p . postcode = %s ;

Onces all of the houses have been fetched they will then be sorted by
house number and returned to the user. It will look like this.

@bp . route (”/ f i n d/< s t r i n g : postcode>”)
def s ea r ch house s (postcode) :

s q l q u e r y = ”””SELECT h . type , h . paon , h . saon , h .
postcode , p . s t r e e t , p . town , p . county

FROM pos tcodes AS p
INNER JOIN houses AS h ON p .

pos tcode = h . pos tcode AND p .
pos tcode = %s ; ”””

Generate SQL query

with current app . app context () : # Connect to app
con t e x t

cur = current app . sq l db . cu r so r ()
cur . execute (sq l query , (postcode . upper () ,)) #

Execute SQL
r e s u l t s : L i s t [Tuple [str , str , str , str , str , str]] =

cur . f e t c h a l l ()
Store r e s u l t s

i f r e s u l t s != [] :
r e s u l t s = sorted (l i s t (set (r e s u l t s)) , key=lambda

x : x [1])
Sort r e s u l t s by house number

return j s o n i f y (
r e s u l t s=r e s u l t s ,

97

) # Return r e s u l t s as JSON
else :

return abort (404 , ”Cannot Find Houses f o r
Postcode ”)

Return error i f no houses are found

After testing it with a postcode it was able to successfully return all the
houses for a given postcode as seen below.

Now that they can search for houses in a postcode I need to create a route
where they can get all of the sales for a house. This will work by getting
the postcode, SAON, and PAON for a house. These will then be used to
search for all of the sales in a house. The SQL queries are shown below in
the Python Code.

98

@bp . route (”/ f i n d/< s t r i n g : postcode>/<path : house>”)
def ge t house saon (postcode , house) :

try :
paon , saon = house . s p l i t (”/”) # Extrac t paon

and saon from path
except ValueError :

paon = house # Only e x t r a c t paon i f no saon
found

saon = ””
sq l hous e que ry = ”””SELECT h . houseid , h . type , h .

paon , h . saon , h . postcode , p . s t r e e t , p . town
FROM pos tcodes AS p
INNER JOIN houses AS h ON p .

pos tcode = h . pos tcode AND p .
pos tcode = %s

WHERE h . paon = %s AND h . saon = %s ;
”””

Generate query f o r g e t t i n g a l l the i n f o about the
houses

s q l s a l e s q u e r y = ”””SELECT ∗
FROM sa l e s
WHERE house id = %s
ORDER BY date DESC; ”””

Generate query f o r g e t t i n g a l l o f the s a l e s

It will now search for a house with these values. Once it has found a
house it can then search for sales.

with current app . app context () : # Connect to app
con t e x t

cur = current app . sq l db . cu r so r ()
cur . execute (sq l house query , (postcode . upper () ,

paon . upper () , saon . upper () ,))
Executes s q l query f o r house
house : L i s t [Tuple] = cur . f e t chone () # Stores

r e s u l t

99

If it has found a house it will then search for all of the sales for that house.
Once it has all of these the data will be returned in JSON format so it first
must be formatted in a python dict

i f house != [] :
cur . execute (s q l s a l e s q u e r y , (house [0] ,)) #

ge t s a l l s a l e s f o r the house
s a l e s = cur . f e t c h a l l ()
Load a l l s a l e s
h o u s e i n f o = {

”paon” : house [2] ,
” saon ” : house [3] ,
” postcode ” : house [4] ,
” s t r e e t ” : house [5] ,
”town” : house [6] ,
” type ” : house [1] ,
” s a l e s ” : s a l e s

}
Format data in d i c t

return j s o n i f y (h o u s e i n f o)
Return as j son

else :
return abort (404 , ”No House Found”)
Return error i f no house found

I tested this with a valid house and an invalid house. It was able to
return all the sales for the house along with the correct address information
as shown below.

100

I then tested it with the invalid address and it successfully returned a 404
page not found.

3.3.6 Review

All of the routes for the API are fully functional and have been tested. Now
that this module has been completed I can tick off the success criteria for
creating an API to interface with. Unfortunately, the API is not a human-

101

interactable module so I won’t be able to get any feedback from my stake-
holder until I create the web interface for it.

3.3.7 Code Layout

3.4 Web Interface

The web interface is one of the most important modules as it is what inter-
faces with the user and it determines how they view the data. For the web
interface, I will be using svelte.js for the javascript framework and chart.js
to make the graphs. Together these should provide a smooth user experience
and allow me to create reactful content for the user.

102

3.4.1 Boilerplate Code

With javascript libraries, a lot of the code is auto-generated for you since it
will be the same for most projects. The default files will be shown below.

web−ui /
s r c /

l i b /
route s /

+page . s v e l t e
app . c s s
app . d . task
app . html

s t a t i c /
f av i con . png
robots . txt

. npmrc
package−l o ck . j son
package . j son
p o s t c s s . c o n f i g . j s
s v e l t e . c o n f i g . j s
t a i lw in d . c o n f i g . j s
t s c o n f i g . j s on
v i t e . c o n f i g . j s

All of these files are created automatically and in my case don’t need to
be edited so I won’t show the contents of them here but it can be found in
the appendix. For my website, I used tailwind CSS to style my elements.
This allowed me to use classes instead of having to write actual css. Below
is an example showing how they are different.

With t a i l w i nd
Hel lo World

Without t a i lw i nd
<−−CSS−−>
. t ex t {

c o l o r : #f f 0 0 0 0 ;
font−s i z e : 25rem ;

}

103

<−−CSS−−>

Hel lo World

You can see how much easier the top example is compared to the bottom.
It also makes the HTML easier to read as the styles are there next to the
code and I don’t have to go hunting in a style sheet to find it.

3.4.2 Search Bar

The key component of my website is the search bar as it is what all the
analysis and lookups originate from so it has to work well otherwise they
won’t be able to access anything else on the website. The search bar will
be accessible in two places the top right of the page to search for an area to
analyse and on the house lookup page to find a postcode. It will work by
detecting when the user types or removes a letter from the input box. When
this happens it will call the autofill function which will then request the web
API with the contents of the input bar as the query. Once the results are
returned they will be shown under the input box as clickable links.

async function autoComplete (s e a r c h v a l u e : s t r i n g){
i f (s e a r c h v a l u e) {

const re sponse = await f e t c h (’ https : // api .
house s ta t s . co . uk/ api /v1/ search / ’ +
s e a r c h v a l u e + ’ ? f i l t e r=’ + f i l t e r) ;

// Sends h t t p r e que s t to api wi th query s t r i n g
and f i l t e r

const data = await re sponse . j son () ;
// Saves j son response
i f (data . found == true){

s u g g e s t i o n s = data . r e s u l t s ;
// I f t h e r e are r e s u l t s saves them to

v a r i a b l e
r e s u l t s = true ;

} else {
r e s u l t s = f a l s e ;

}
} else {

104

r e s u l t s = f a l s e ;
}

}

To make this function run when keys are typed I need to add an event
listener to the input field like below.

<div class=” f l e x f l e x −c o l ”>
<input type=” text ”
name=” area ”
class=”p−3 rounded”
autocomplete=” o f f ”
on : input={e => autoComplete (e . t a r g e t . va lue)} //

Event l i s t e n e r to run when typing
>

</div>

Now that it sends a request and saves the results every time you type in
it I now need to output the results in a list below the search bar so that the
user can click on them. I will do this using a condition in svelte to only show
a block of HTML if the statement is true and then use a for loop to show
all the results in the list. Svelte is a reactful library so whenever a variable
changes value the interface is automatically updated e.g. when a new search
request is done the list is automatically updated.

{# i f i sFocused == true } // I f the user i s c l i c k e d on
the search bar
<div class=””>
{# i f r e s u l t s == true } // I f the re are r e s u l t s to

show
{#each s u g g e s t i o n s as sugge s t i on } // Loop

through them
 //

Create a l i n k to the page
{ sugge s t i on [0] }
{ sugge s t i on [1] }

{/ each}
{ : e l s e }

<p class=”ml−2”>No Resu l t s</p>

105

{/ i f }
</div>

{/ i f }

I removed the styling so the code can be understood more easily. All of
this code is then put together to create a component. Components in svelte
are reusable pieces of code that are used to produce parts of an interface.
It’s the same concept as functions but for a GUI. This allows me to write
the code for it once and use it all over the website by simply importing it
into the page. Each component gets its file in the lib folder. Components
can also take arguments so for example in the search bar it takes a filter as
an argument so it can be used in the house lookup to search postcodes.

I then tested the search bar by typing in areas and seeing if it came up
with the correct suggestions which it did. You can see an example below.

106

3.4.3 Analysis Page

Now that I had the search bar working I could move to the analysis page. For
this page, I used a few components to display the data. I made a component
for each of the charts bar, line, and pie chart. I also made what I call a badge
which is a colourful box to house the ‘quick stats’ data.

Quick Stats Component

This was the simplest component as it was just a coloured box with the stat
name, value, and percentage change. It took the name, value, and change
as arguments which were then passed to the HTML to be rendered. It also

107

took an argument if the stat was a currency or not. This would round the
number to two decimal places and insert a pound sign if it was. The code
for this is below.

<script lang=” t s ”>
l e t fo rmatte r = I n t l . NumberFormat (’ en ’ ,

{
notat ion : ’ compact ’ ,
un i tDi sp lay : ’ long ’ ,
s t y l e : ’ currency ’ ,
currency : ’GBP’

}) ; // Currency par s e r to round and add symbol

// Arguments being de f ined f o r the component
// with d e f a u l t va lue s
export l e t va lue : GLfloat ;
export l e t u s ing pe r c en tage : boolean = f a l s e ;
export l e t percentage : GLfloat = 0 ;
export l e t t i t l e : s t r i n g ;
export l e t currency : boolean = true ;
export l e t co l ou r : s t r i n g ;

</ script>

<div class=”bg−{co l ou r }−600”>
{# i f currency } // Display as currency i f chosen

<p>{ f o rmatte r . format (va lue)}</p>
{ : e l s e } // Display as number i f not

<p >{ value . t oLoca l eS t r i ng () }</p>
{/ i f }
{# i f u s ing pe r c en tage }
// Showing the percentage and a s i gn f o r i n c r e a s e

or dec r ea se
<p>{percentage < 0 ? ’down ’ : ’up ’} {Math . abs (

percentage)}%</p>
{/ i f }
<p>{ t i t l e }</p>

</div>

Once written I then tested these with some data I just came up with and

108

the results are below. I did one with currency and one without to test the
features along with different colours. They worked great so now i can move
onto the next component.

Line Graph Component

The line chart is a slightly more complex component but a lot of the code is
simply configuring and styling the graph for my preference. I will also need
to transform the data to work with chart.js. The data is stored in the format
shown below.

{
” house types ” : [< l i s t o f types >]
” p r i c e s ” [

[< l i s t o f p r i c e s >] ,
[< l i s t o f p r i c e s >] ,
[< l i s t o f p r i c e s >] ,
[< l i s t o f p r i c e s >]

] ,
” dates ” : [< l i s t o f dates >]

}

Chart.js takes it in the format show below.

109

{
” l a b e l ” : <house type>,
” data ” : < l i s t o f p r i c e s >,

}

When it is creating the line chart it will need to match up the house
type with its corresponding list of data points. This will be done by looping
from 0 to however many property types and then getting the value from the
house types and the prices list corresponding to that index. I will then use
a hashmap to get a human-readable version of the house type to display on
the graph. Each property type will also be assigned a colour.

l e t house types : { [key : s t r i n g] : s t r i n g } = {
’D ’ : ”Detached” ,
’S ’ : ”Semi−Detached” ,
’T ’ : ” Terrace ” ,
’F ’ : ” Flat ” ,
’O ’ : ’ Other ’ ,
” a l l ” : ” Al l ”

} ; // Hashmap fo r human−r eadab l e v e r s i on

l e t c o l o u r s = [
’#dc2626 ’ ,
’#9333ea ’ ,
’#16a34a ’ ,
’#db2777 ’

] # D i f f e r e n t c o l o u r s to use

export l e t l a b e l s : Array<s t r i ng >;
export l e t t i t l e : s t r i n g ;
export l e t data : Array<Array<BigInt>>;
export l e t dates : Array<s t r i ng >;

l e t data l ength = data . l ength ;
l e t da ta s e t s = [] ;

for (l e t i = 0 ; i < data l ength ; i++){
data s e t s . push ({ // Add to da t a s e t l i s t

110

l a b e l : house types [l a b e l s [i]] , // Get human
ver s i on o f type

data : data [i] , // Get numbers from pr i c e l i s t
t en s i on : 0 . 1 ,
borderColor : c o l o u r s [i] , // Assign i t a unique

co lour
f i l l : f a l s e ,

}) ;
}

Once the data has been transformed into the correct format it can be
rendered into a graph. To do this it needs to have a target to render it on
with a unique id. The graph will also need to be configured to have the x-axis
display dates, be responsive and allow for panning and zooming in.

const char t data = {
l a b e l s : dates . map((x) => {return new Date (x

) }) ,
da ta s e t s : da ta s e t s

} ; // Adds da te s to a l i s t and conver t s a
s t r i n g to DateTime o b j e c t

const c o n f i g = {
r e spon s i v e : true ,
type : ’ l i n e ’ ,
data : chart data ,
opt ions : {

s c a l e s : {
x : {

type : ’ time ’ ,
time : { // Se t s sma l l e s t un i t

f o r x−ax i s
round : ’month ’ ,
minUnit : ’month ’

} ,
adapters : {

date : {
l o c a l e : enGB

} // Se t s date format
}

111

}
} ,
p lug in s : {

zoom : {
pan : {

enabled : t rue
} , // Enables panning
zoom : {
wheel : {

enabled : true ,
} , # enab l e s zooming
pinch : {

enabled : t rue
} ,
mode : ’ xy ’ ,
}

} ,
t i t l e : {

d i s p l a y : true ,
t ex t : t i t l e

} # Sets the t i t l e for the graph
}

}
} ;
l e t l i n e c h a r t : Chart ;
onMount (()=> { // Runs code when page i s loaded

l e t ctx = document . getElementById (graph id)
; // Gets t a r g e t canvas to render on

i f (ctx != n u l l){
l i n e c h a r t = new Chart (ctx , c o n f i g) ; #

Renders graph on t a r g e t canvas
}

})

There also needs to be some HTML to go with this and there needs to
be a reset button for zooming so the user can go back to the default view of
they get stuck.

<canvas id={graph id }> // Canvas to render graph on

112

</ canvas>
<button on : c l i c k ={ l i n e c h a r t . resetZoom (’ de fau l t ’) } type

=” button ”>Reset Zoom</button>

Now that I have all the pieces working i can test it using some of the
data. Below you can see the results.

Bar Chart

This will be a very quick section as the bar chart is the exact same as the
line graph except in the config section instead of line you write bar.

const c o n f i g = {
r e spon s i v e : true ,
type : ’ bar ’ ,
data : chart data ,
. . . }

As you can see below it works just as well as the line graph.

113

Pie Chart

The pie chart was quite easy as the data format that chart.js coincides with
the format I’m storing in the database. I also used the bit of code to convert
the property types to human-readable ones from the line and bar chart. The
chart data code for the pie chart is shown below.

l e t house types : { [key : s t r i n g] : s t r i n g } = {
’D ’ : ” Detatched ” ,
’S ’ : ”Semi−Detatched ” ,
’T ’ : ” Terrace ” ,
’F ’ : ” Flat ” ,
’O ’ : ’ Other ’

} ; // Hashmap o f human−r eadb l e t ype s

// Def in ing arguments f o r component
export l e t l a b e l s : Array<s t r i ng >;
export l e t t i t l e : s t r i n g ;
export l e t data : Array<BigInteger >;

const char t data = {
l a b e l s : l a b e l s . map((x) => {return house types [x] }) ,

114

// Convert t ype s to human readab l e
data s e t s : [{

l a b e l : t i t l e ,
data : data , // Set data
backgroundColor : [
’#dc2626 ’ ,
’#9333ea ’ ,
’#16a34a ’ ,
’#db2777 ’
] , // Set co l ou r s f o r each type
hoverOf f s e t : 4

}] ,
} ;

Once the data has been set in the dataet it is then configured and rendered
the same as the bar and line chart except there are less variables as the pie
charts are a lot simpler and there is less to control.

const c o n f i g = {
type : ’ p i e ’ ,
data : chart data ,
opt ions : {

p lug in s : {
t i t l e : {

d i s p l a y : true ,
t ex t : t i t l e // Se t s t i t l e

}
}

}
} ;
onMount (()=> { // Renders when page l oads

l e t ctx = document . getElementById (’ p i e ch a r t ’) ;
new Chart (ctx , c o n f i g) ;

})

This is then rendered onto a canvas tag the same as the other graphs.
Below is the pie chart.

115

Review

Now that I had all of the components made I sent the test images shown
above of each one to my stakeholder. They each gave me feedback for them
and it was mostly positive. The responses are summarised below as they had

116

mostly similar things to say.
Both Steven and Scott said they liked the colours as they contrasted well

and made the graphs clear and easy to see. Neither of them had anything to
say about the quick stats badges. Both of them did mention how on the line
graph the line was a bit thick so they found it hard to see exactly where it
was on the graph. Fortunately, this is just a setting I can tweak in the config
section. Scott also said that the inconsistencies in the keys on the graphs
annoyed him as flats would be green on the pie chart but purple on the line
graph. He did say this was him being pedantic though fortunately this is
also an easy fix.

The line width issues will be fixed as shown below.

const c o n f i g = {
r e spon s i v e : true ,
type : ’ l i n e ’ ,
data : chart data ,
opt ions : {

borderWidth : 0 . 5 , // Changes l i n e
t h i c k n e s s

. . .
} . . .

}

The mismatching colours in the keys were simply fixed by changing the
order of colours in the list for the pie chart.

3.4.4 Page Layout

Now that all the components have been created and I have gotten feedback
from my stakeholders I can combine the components into the analysis page
but before this happens I need to write the logic that fetches the data using
the API. In svelte you can write logic that runs whilst the page is loading in
a ‘+page.ts’ file. This runs whilst loading so is useful for fetching any data
that might be needed when the page gets rendered.

Loading Data

To get the data from the API i have to first make a request to the analyse
endpoint to run a job on the data aggregators. Once that has been sent it

117

then needs to repeatedly request from the url returned until it says there are
results. When these results are recieved they are then passed on to the page
to be rendered.

import { e r r o r } from ’ @ s v e l t e j s / k i t ’ ;

export async function load ({ f e tch , params }) {
const s l e e p = (ms : number) => new Promise ((r)

=> setTimeout (r , ms)) ;
// S leep func t i on to wai t b e f o r e r e qu e s t i n g again

l e t area : s t r i n g = params . area ; // area s t r i n g
l e t a r ea type : s t r i n g = params . a rea type ; //

area type s t r i n g

l e t s t a t s ;
l e t counter = 0 // r e que s t counter i f i t t imes

out

const re sponse = await f e t c h (’ https : // api .
house s ta t s . co . uk/ api /v1/ ana lyse / ’ +
area type + ’ / ’ + area) ;

// Send r e qu e s t s to ana ly se the endpoint to s t a r t
j ob

const data = await re sponse . j son () ;
// Store s j son response

i f (data . s t a t u s == ”ok”) {
while (t rue) {

const r e s r e s p = await f e t c h (data .
r e s u l t) ;

// Checks re turned endpoint to see i f the
job i s done

s t a t s = await r e s r e s p . j son () ;

i f (s t a t s . done == true) {
break // I f i t r e tu rns

the data break out

118

o f the loop
} else i f (counter > 60∗4) {

throw e r r o r (500 , ’
Connection Timed Out
’)

// I f r e que s t take l onge r than 4
minutes r a i s e an error

}
counter++;
await s l e e p (250) // s l e e p s f o r

250ms between r e qu e s t s
}

} else {
throw e r r o r (500 , ’An Error Has Occured ’

) ;
}
return s t a t s

}

To test this I got it to ‘console.log’ the raw data so I know if it was loaded.

As you can see it was able to successfully load the data so now I can move
on to laying out the components on the page.

119

Page Layout

Before I can write the HTML for the page I need to import the components
and set some variable. This will make it easier to pass the data to the
components as it is a heavily nested JSON object. The components will be
imported first and then there will be some logic to check if the data has been
loaded correctly and then it will be broken up into variables to make it easier.

// Import a l l o f the components
import Badge from ’ $ l i b /components/Badge . s v e l t e ’ ;
import QuickStat from ’ $ l i b /components/ QuickStat . s v e l t e

’ ;
import PieChart from ’ $ l i b /components/ PieChart . s v e l t e ’ ;
import LineGraph from ’ $ l i b /components/LineGraph . s v e l t e

’ ;

l e t q u i c k s t a t s , s t a t s , r e s u l t s ;
l e t l a s t updated : Date ;
l e t current month : Date ;
// I n i t v a r i a b l e s

export l e t data ;
i f (data . done == true) { // Check i f data i s loaded

// S p l i t data up in t o v a r i a b l e
q u i c k s t a t s = data . r e s u l t s . data . q u i c k s t a t s ;
s t a t s = data . r e s u l t s . data ;
r e s u l t s = data . r e s u l t s ;

// Get import da te s
l a s t updated = new Date (r e s u l t s . l a s t updated) ;
current month = new Date (q u i c k s t a t s . current month)

;
}

l e t t i t l e = ” Analyse ” ; // Set page t i t l e

// Function to he l p wi th fo rmat t ing some o f the data
function toTi t l eCase (s t r : s t r i n g) {

120

return s t r . toLowerCase () . s p l i t (’ ’) . map(function (
word) {
return (word . charAt (0) . toUpperCase () + word .

s l i c e (1)) ;
}) . j o i n (’ ’) ;

}

First, I want the quick stats to be displayed at the top front and centre
so they are the first to be seen and easy to read. Alongside them will be
the title of the area and what is the most recent month. The title will be
accompanied by some statistics on the data processing like how long each
step took and when it was last updated. The HTML for this is below.

<div class=”m−2”>
<div class=” items−c en te r a l i gn −middle f l e x f l e x −

i n i t i a l f l e x −wrap”>
<p class=” i n l i n e −block text −2x l m−2 a l i gn −

middle ”>
{ toTi t l eCase (r e s u l t s . area)} ({ toTi t l eCase (

r e s u l t s . a r ea type) })
</p>
<Badge

text=” Last Updated { l a s t updated .
toLoca l eDateStr ing () }”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
<Badge

text=” Execution Time {Number ((r e s u l t s .
exec t ime) . toFixed (3))} s ”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
<Badge

text=”Data Fetch Time {Number ((r e s u l t s .
l oad t ime) . toFixed (3))} s ”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>

121

<Badge
text=” Current Month { current month .

toLoca l eDateStr ing () }”
co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
</div>

</div>

You can see all of the numerical values are rounded to 3 decimal places
and all the dates are converted to the user’s timezone and date format. The
text is also all in title case. You can see how it looks below.

Now I can do the quick stats which will be laid out horizontally 4 across
with individual colours and statistics.

<QuickStat
value={q u i c k s t a t s . a v e r a g e p r i c e }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . average change }
t i t l e=”Average House Pr i c e ”
co l ou r=” red ”

/>
<QuickStat

value={q u i c k s t a t s . c u r r e n t s a l e s v o l u m e }
currency={ f a l s e }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . sa l e s vo lume change

}
t i t l e=” Sa l e s Volume”
co l ou r=” purple ”

/>
<QuickStat

value={q u i c k s t a t s . cu r r en t p r i c e vo lume }
us ing pe r c en tage={t rue }

122

percentage={q u i c k s t a t s . pr i ce vo lume change
}

t i t l e=” Sa l e s Pr i ce Volume”
co l ou r=” green ”

/>
<QuickStat

value={q u i c k s t a t s . e x p e n s i v e s a l e }
us ing pe r c en tage={ f a l s e }
t i t l e=”Most Expensive House”
co l ou r=” pink ”

/>

The last part for this page is the graphs. There will be four graphs average
price, price volume, sale quantity, and property type proportions. Together
these will provide the user with a comprehensive view of the property market
for that area.

<div class=” x l : row−span−2”>
<PieChart

t i t l e=” Property Types”
l a b e l s={ s t a t s . t ype p ropo r t i on s . type}
data={ s t a t s . t ype p ropo r t i on s . count }/>

</div>
<div class=”md: co l−span−2 row−span−2”>

<LineGraph
t i t l e=”Monthly Average Pr i c e ”
l a b e l s={ s t a t s . a v e r a g e p r i c e . type}
data={ s t a t s . a v e r a g e p r i c e . p r i c e s }
dates={ s t a t s . a v e r a g e p r i c e . dates }/>

</div>
<div class=” md: co l−span−2 row−span−2”>

<BarGraph
t i t l e=” Sa l e s Volume”

123

l a b e l s={ s t a t s . monthly sa les vo lume . type
}

data={ s t a t s . monthly sa les vo lume . volume
}

dates={ s t a t s . monthly sa les vo lume . dates
}/>

</div>
<div class=”md: co l−span−2 row−span−2”>

<BarGraph
t i t l e=” Pr i ce Volume”
l a b e l s={ s t a t s . monthly pr ice volume . type

}
data={ s t a t s . monthly pr ice volume . volume

}
dates={ s t a t s . monthly pr ice volume . dates

}/>
</div>

The analysis page is now finished along with all of the components for it.
I sent copies of it over to both of my stakeholders and they both said they
were very happy with it and were excited to see the finished product.

124

House Lookup

For this section, I need to make a page that uses the search bar to lookup
postcodes and then takes the user on to another page where they can see all
the houses for that postcode in a table. Each house in that table will then
have a link where they can go see more information about that house and
the sales for it.

Search Page

The search page will be a fairly simple page containing only a search bar in
the centre and the suggestions list below. It will use the search bar component
that was previously made and it will make use of the filter argument to only
search postcodes. The code for this will be cery short so wont require much
explanation.

<script lang=’ ts ’>
import SearchBar from ’ l i b /components/ SearchBar

. s v e l t e ’ ;
</ script>

<s v e l t e :head>
<t i t l e>House Stat s | Valuat ion</ t i t l e>

</ s v e l t e :head>

<div class=” f l e x j u s t i f y −c en te r items−c en te r max−w−
s c r e en ”>

<div class=”−mt−28”>
<p class=” text −3x l ”>Enter Postcode

Below</p>
<SearchBar f i l t e r=” postcode ”/>

</div>
</div>

Below you can see how this page looks. There isn’t much to this page so
I didn’t ask my stakeholder for any feedback.

125

House Table Page

Fortunately, this page has a bit more to it so there will be more to talk about.
Like the analyse page it will need to load the data first. This is again done
through the ‘+page.ts’ file. Loading this data is a lot more simple as it only
requires ones API call.

import { e r r o r } from ’ @ s v e l t e j s / k i t ’ ;

export const load = (async ({ params }) => {
l e t postcode : s t r i n g = params . postcode ;

const re sponse = await f e t c h (’ https : // api .
house s ta t s . co . uk/ api /v1/ f i n d / ’ + postcode .
toUpperCase ()) ;

// Fetch houses from pos tcode us ing API

const data = await re sponse . j son () ;
// Store r e s u l t s as JSON

i f (r e sponse . s t a t u s == 200) { // Check f o r
succe s s

return {
data : data . r e s u l t s ,
postcode : postcode

} // Return r e s u l t s to be rendered on page
} else {

throw e r r o r (404 , ’No Postcode Found ’) ;

126

// Raise error i f no houses found
}

}) ;

Now that the data has been loaded it can be rendered as HTML. It will
be displayed in a table with 6 rows. These will be SAON & PAON, Street,
Town, County, Postcode, and Action. The action column will house the
link to see more information on the property. To show each house from the
postcode I will use a for loop to iterate through the list and insert the value
into the HTML as shown below.

<tbody>
{#each data . data as house} // Loop through houses

<tr class=”bg−white border−b dark : bg−gray −900
dark : border−gray −700”>
<th scope=”row” class=”px−6 py−4 font−

medium text−gray −900 whitespace−nowrap
dark : text−white ”>
{house [2] } { house [1] != ’ ’ && house [2]

!= ’ ’ ? ’ , ’ : ’ ’} {house [1] } //
Display house PAON and SAON

</th>
<td class=”px−6 py−4”>

{house [4] }
</td>
<td class=”px−6 py−4”>

{house [5] }
</td>
<td class=”px−6 py−4”>

{house [6] }
</td>
<td class=”px−6 py−4”>

{house [3] }
</td>
<td class=”px−6 py−4”>

<a href=”/ va lua t i on /{data . postcode .
toUpperCase () }/{house [1]}/{ house [2] }
”>View

// Create l i n k to see more i n f o on the

127

house
</td>

</ tr>
{/ each}

</tbody>

This code snippet will be embedded in the table

<div class=”md:mx−24 my−8”>
&l t ; Back
<div >

<table >
<caption >

{data . postcode . toUpperCase () }
<p class=””>Al l o f the houses with the

postcode {data . postcode . toUpperCase
() } .</p>

</caption>
<thead>

<tr>
<th scope=” c o l ” class=”px−6 py−3”> SAON,

PAON </th>
<th scope=” c o l ” class=”px−6 py−3”> S t r e e t <

/th>
<th scope=” c o l ” class=”px−6 py−3”> Town </

th>
<th scope=” c o l ” class=”px−6 py−3”> County <

/th>
<th scope=” c o l ” class=”px−6 py−3”> Postcode

</th>
<th scope=” c o l ” class=”px−6 py−3”> Action <

/th>
</ tr>

</thead>
<<<I n s e r t Snippet HERE>>>

</ table>
</div>

</div>

128

The styling has been removed to make the HTML more readable.

The next part was displaying the sales data on a house. This would again
require me to load the data from the API using the ‘+page.ts’ file. This only
required one API call so will look almost identical to the house list call except
the URL will be slightly different.

import { e r r o r } from ’ @ s v e l t e j s / k i t ’ ;

export const load = (async ({ params }) => {
l e t postcode : s t r i n g = params . postcode ;
l e t paon : s t r i n g = params . paon ;
// parse in format ion from path

const re sponse = await f e t c h (’ https : // api .
house s ta t s . co . uk/ api /v1/ f i n d / ’ + postcode .
toUpperCase () + ’ / ’ + paon . toUpperCase ()) ;

// Fetch house s a l e s
const data = await re sponse . j son () ;
// Store house s a l e s as j son

i f (r e sponse . s t a t u s == 200) { // Check f o r
succe s s

return { // Return data upon succe s s
s a l e s : data ,
postcode : postcode ,

129

paon : paon
}

} else {
throw e r r o r (404 , ’No Postcode Found ’) ;

// Raise error i f no house or s a l e s found
}

}) ;

Once the information had loaded this was once again passed over to the
HTML to be rendered. Since I will be displaying price information I will need
to use the currency format as I did for the quick stats component. Again for
simplicity, I will split the JSON data up into individual variables to be used
making the code easier to read and work with. Below is the code for this.

function toTi t l eCase (s t r : s t r i n g) {
return s t r . toLowerCase () . s p l i t (’ ’) . map(function (

word) {
return (word . charAt (0) . toUpperCase () + word .

s l i c e (1)) ;
}) . j o i n (’ ’) ;

} // Function to format t e x t data as t i t l e

export l e t data : PageData ;

// Divide j son up in to i n d i v i d u a l v a r i a b l e s
l e t s a l e s = data . s a l e s ;
l e t paon = data . paon ;
l e t saon = data . saon ;
l e t postcode = data . postcode ;

// I n i t i a l i z e number format t e r
l e t fo rmatte r = I n t l . NumberFormat (’ en ’ , {

notat ion : ’ compact ’ ,
un i tDi sp lay : ’ long ’ ,
s t y l e : ’ currency ’ ,
currency : ’GBP’

}) ;

For the first part of the page, I want to have the title be the house number

130

and street and then below that show all the address information about the
house. The address information will be housed within its white box.

<p class=” text −2x l my−4 mx−2”>{ toTi t l eCase (saon) + (
saon != ’ ’ ? ’ , ’ : ’ ’) }{ toTi t l eCase (paon) } , {
toTi t l eCase (data . s t r e e t)}</p>

// Convert house number and s t r e e t to t i t l e case f o r
the t i t l e

<div class=”row−span−2 bg−white p−4 rounded”>
<p class=” text−l g ”>House Infomation</p>
<div class=” border −2 p−2”>

<p class=” font−bold ”>Address</p>
<p>

{ saon} {paon } ,

{data . s t r e e t } ,

{data . town} ,

{postcode }

</p> // Show the address f o r the house
</div>

</div>

Now I’m going to create a table to show all of the sales a house has
had since 1995. The table will have 5 columns price, date, sales, type,
ppd category, and new build. The code for the table will be the same as
the house list minus the column names and row data.

131

{#each s a l e s as s a l e }
<tr class=”bg−white border−b dark : bg−gray −800 dark :

border−gray −700”>
<th scope=”row” class=””>

{ f o rmatte r . format (s a l e [1]) }
</th>
<td class=”px−6 py−4”>

{(new Date (s a l e [2])) . toLoca l eDateStr ing () }
</td>
<th class=”px−6 py−4”>

{ s a l e [4] == true ? ” Freehold ” : ” Leasehold ”
}

</th>
<th class=”px−6 py−4”>

{ s a l e [5] == ”A” ? ” Standard Pr i ce Paid” : ”
Addi t iona l Pr i c e Paid”}

</th>
<th class=”px−6 py−4”>

{ s a l e [3] == true ? ”True” : ” Fa l se ”}
</th>

</ tr>
{/ each}

This is what the row part looks like. I won’t show the rest of the table as
it is identical to the other part except the column names. Now with all the
parts done, you can get a final view of what the page will look like.

132

I sent all of the pictures of the pages to my stakeholders for some feedback.
They both got back to me and were very impressed with it and said that they
couldn’t think of any meaningful changes that I could make to it.

Navigation Bar

The navigation bar is the glue for my website as it is where the user navigates
between pages and where they search for new places to analyse. The navbar
is a component that will be placed at the top of every single page so it is
always accesible. The navbar will also be dynamic so whichever page the
user is currently on will be blue text. This is done by using the page data
store in svelte to see what the current path is.

// Import components and l i b r a r i e s
import { page } from ’ $app/ s t o r e s ’ ;
import SearchBar from ’ $ l i b /components/ SearchBar . s v e l t e

’ ;

$: cu r r ent page = $page . u r l . pathname ; // Def ines a
v a r i a b l e to ho ld the curren t page

When a variable is defined using a dollar sign in svelte it means that
when it changes it will automatically update the UI. This is required for the
navbar as I want the text to change as soon as they change the page. The
code to make the text blue looks like this.

<a

133

href=”/ va lua t i on ”
class=” block py−2 pl −3 pr−4 rounded { cur rent page === ”

/ va lua t i on ” ? ’ text−blue ’ : ’ text−gray −700 ’}”
>House Lookup

So when the current page variable is the same as the page path the text
is blue. This code is used on all the links in the navbar. Aswell as that the
searchbar is embedded at the end of the navbar to allow users to search for
an area no matter where they are on the website.

<nav >
<div >

<img src=”/ logo . svg ” alt=”House S ta t s Logo”

/>
House Stat s

</div>
<div class=””>

<ul class=””>
< l i>

<a
href=”/”
class=” block py−2 pl −3 pr−4 rounded

 { cur rent page === ”/” ? ’ text−
blue ’ : ’ text−gray −700 ’}”

>Dashboard
</ l i>
< l i>

<a
href=”/ count i e s ”
class=” block py−2 pl −3 pr−4 rounded {

cur rent page === ”/ count i e s ” ? ’
text−blue ’ : ’ text−gray −700 ’}”

>Overview Counties
</ l i>
< l i>

<a
href=”/ va lua t i on ”

134

class=” block py−2 pl −3 pr−4 rounded {
cur rent page === ”/ va lua t i on ” ? ’
text−blue ’ : ’ text−gray −700 ’}”

>House Lookup
</ l i>
< l i>

<a
href=”/ r e p o r t s ”
class=” block py−2 pl −3 pr−4 rounded {

cur rent page === ”/ r e p o r t s ” ? ’ text
−blue ’ : ’ text−gray −700 ’}”

>Report Generator
</ l i>

</div>
<SearchBar></ SearchBar>

</nav>

Below you can see the end result of this giving the user an easy way to
navigate around the website.

Review

Now that I have all of the pages completed I sent a link to my stakeholders
where they could go and play around with pages and see if there were any
issues or areas that needed improving.

Scott said that he liked the website and that it had a nice look and feel to
it. He did say that it would be nice to have a short bit of text that explains
all of the statistics and what they mean for people who may not be as well-
versed. If I had more time I could’ve added some tooltips next to each stat
explaining them.

Steven said he was very impressed with the site and how professional it
looked. He had some slight issues when accessing it on his phone as the screen
wasn’t big enough to view the graphs as they were quire squash. Had I had
more time I would’ve invested more time into making it more mobile-friendly

135

but my mine demographic was a professional user who would be accessing it
on desktops or iPads with larger screens

136

Chapter 4

Evaluation & Stakeholder
Testing

4.1 Stakeholder Testing

4.1.1 Questions

1. What device are you using and how does the website look on your
device?

2. Did the page load promptly?

3. Do you understand what each statistic means on the home dashboard?

4. Were you easily able to search for statistics on a specific area?

5. How did you feel about the time taken to load the statistics?

6. How easy was it to view the history of a specific property?

7. Was the information laid out intuitively?

4.1.2 Responses

Scott

1. I opened the website on my laptop and the data was laid out fine all of
the information was easy to read and the colour palette made it easy
on the eyes.

137

2. The home page loaded as quickly as any other website so I wasn’t sat
there waiting

3. I was able to understand almost all of the statistics on the home page
except what the ’Top Areas’ meant but after googling it I realised it was
referring to postcode area and I was initially confused by the suffixes
used for the numbers on the quick stats so maybe they could be the
full word like ’Million’ instead of ’M’

4. The search was super easy and the autocomplete made it even easier
as I couldn’t go wrong with it and the suggestion loaded very quickly.
One suggestion I would add tho is the ability to just press enter instead
of having to click on the desired area

5. On my first search it took a fair few seconds but not so long to put
me off. When I searched for another area though it loaded almost
instantaneously

6. Searching for a property was super easy as I just needed to type in
the postcode which was autocompleted for me and then click the house
number.

7. The information was laid out fine and it was easy to understand each
section of it. A nice addition would be to suggest similar properties in
the area

Steven

1. I opened the website on my iPad. The website looked great on my iPad
and I could read everything though it would be nice if the graphs were
a bit bigger.

2. It took a few seconds to load but that might have been down to me
being on-site and using cellular data.

3. I could understand all the statistics presented to me though my pro-
fessional background probably played a part in that and the colours
complemented each other nicely making it easy to read

138

4. The search function was very easy to use and the autocomplete made
it even simpler to use. It might’ve been just me but I found I had to
tap the area a few times before the website registered it

5. I was very impressed by how quickly the statistics loaded as I chose
quite a large area to view

6. Initially I had a bit of trouble searching for a property as it wouldn’t
show up in the results after typing in the postcode. I tried another
property and that worked fine. I would recommend looking into the
first property as I’m 100% sure it exists

7. I liked the layout of the information and the Energy Proficiency Cer-
tificate was handy as it gave me an idea of the size of the property and
the age

4.1.3 Review

Overall the stakeholders seemed very happy with the solution and had mostly
positive things to say about it. They were happy with the loading time
which was my biggest challenge and how it was laid out. One of the issues
was not an issue with my programme but instead with the data provided.
For example, after speaking with Steven the property he was searching for
had not been sold after 1995 so it was not listed in the government dataset.
Some of the other issues they put forward were to do with the usability of
the programme for example Scott not understanding the suffixes and not
understanding what some of the statistics mean. This could be solved by
having a little question mark logo by each statistic which when hovered over
could show a brief explanation of what it means and what it could indicate.
The issues Steven raised about having to tap multiple times when trying
to select an area, unfortunately, could not be replicated so I am unable to
fix that issue though the suggestion to be able to press enter to select an
area would be able to remediate this issue as they wouldn’t have to tap the
specific area. Another suggestion to show similar properties in an area when
looking at another property would be tough to implement as I would have to
find a dataset containing the attributes of each house so I can decide what
is similar and what is not.

139

4.2 Sucess Criteria

Criteria Met Evidence
Insert the PPD data
into an SQL database
in 3NF

Yes Screenshot below

Query data from the
database using Python

Yes Screenshot below

Performing statistical
operations on data
using Python

Yes Screenshot below

Selecting data from
specific areas and
aggregating it

Yes Screenshot below

Creating an API to
interface with and get
data

Yes Screenshot below

Creating a user
interface to show data
from the API via
graphs and figures

Yes Link to website below

Having searched for
historical data taking
¡500ms

No Screenshot below with
video

Generating statistics
for an area and
displaying taking
¡2000ms

No Screenshot below with
video

Upload new data to
the website for
analysing and
searching

No n/a

Setting time frames
for analyses of the
data

No n/a

140

4.2.1 Evidence

Data Stored in 3NF

Sales Table

Houses Table

Postcodes Table

141

In the images above you can see the data that is stored in the database.
Each image is a separate table and you can see that there is no duplicated
data and referential integrity is maintained. The way it reduces duplicate
data is by using foreign keys to link data to multiple records. For example,
you can have multiple sales for a house and instead of storing the address
data for the house with each sale you just link to it using a foreign key. This
can dramatically reduce the amount of space the data take up compared to
its raw form as a CSV file.

Querying Data Using Python

Above you can see the code to fetch the results from the database. It first
connects to the database and then executes the query. The results are limited
to 10 for testing purposes. These are then printed on each line individually.
This is just a simple prototype of how the data is fetched as code similar to
this is used all over the programme to fetch data to be processed and then
displayed.

142

Performing Statistical Operation on Data

Below is a screenshot of the data produced after aggregating data for a
specific area. This shows two of the criteria met ’Performing Statistical
Operations’ & ’Selecting data from specific areas and aggregating it’. The
data is processed using the Polars library and then outputted in JSON format
so it can be easily integrated with a web browser. In the image, the fields
are collapsed so you can’t see their contents. This is because there are lists
containing up to 300 items in them which would take up many pages.

Web API Proof

Below is a screenshot showing the JSON response when sending an HTTPS
request to my webserver running the Flask web API. This API can be called
programmatically using Javascript. This allows the data to be shown in a
web browser or displayed in graphs.

143

Web UI Proof

Here is the link to the website housestats.co.uk. Below are links to videos
showing the website being used. The website can be accessed on any device
with an up-to-date web browser and an internet connection.

• Home Dashboard

• Area Statistics

• Search for Historic Sales

Loading Historical Data

Below you can see a screenshot of the timings when making an HTTPS
request to the web API route to fetch historical data. Unfortunately, I was
not able to tick this one off of the success criteria. The cause of this was
the server that the database was running on. This led to SQL transactions
taking anywhere between 0.5 seconds and 5 minutes depending on how much
data was being returned. This could be fixed by using an SSD on the server
so it can read the data quicker resulting in a shorter query time. Although it
may not have met the success criteria it is still well within acceptable limits
as shown by my stakeholders.

Loading Satistics for an Area

Below are the timings for loading statistics for a given area. You can see
that this was able to fetch the data within 2000ms and then return it in the
JSON format. There is also a video below showing the whole process in the
web UI. Loading Area Statistics

144

https://housestats.co.uk
https://youtu.be/FV5H8ISv26o
https://youtu.be/pi19YE_6EKM
https://youtu.be/voWWdidUkp8
https://youtu.be/pi19YE_6EKM

Other Unmet Criteria

There were two other criteria I was unable to meet but these were due to
design decisions I made. The loading of new data into the website was instead
changed for a programme which would automatically detect new data on the
government website and then insert it into the database and clear the cache.
This is a lot more efficient as it removes the need for a human to be involved
and is a lot quicker as it happens as soon as there is an update. The other
unmet criteria is settings time frames for the data. This again was not met
due to a design decision. Instead, the user can zoom in on the graph to see
the data from a specific month.

4.3 Usability Features

I managed to incorporate a lot of usability features in my solution. For

145

example, when searching for a specific area suggestions come up making it
easier to search. This is shown in the image above.

The web page is responsive so it works on many different types of devices
and the content scales to fit the device making a better user experience.
This means that it can be accessed on a portable device which is useful if a
surveyor is on-site and they don’t have access to a computer it also makes it
more accessible as almost all web traffic is done by mobile phones so makes
the site more appealing if it also works on a phone.

One of the complaints I got from my stakeholders though is that the data
doesn’t have any explanations so if you don’t know much about housing you
might not understand what any of them are. My solution for this would be
to add a tooltip for each of the stats which when hovered over would show
information about it.

4.4 Limitations

My biggest limitation was the hardware that I was running it on. This often
causes my programme to crash as it ran out of memory since the data could
often be more than 10GB when processing. It also meant that database
queries would take a long time as the CPU had a relatively low clock speed
and it was using HDD so it would take quite a while to read data since
they aren’t very good at random reads. All of this results in API requests
are taking longer than they should. This could be quite easily fixed by just
buying servers with CPUs that have higher clock speeds and more cores along
with NVME SSDs but unfortunately, I did not have the capital for this.

146

One of the other limitations is the latency of the data provided by the
government. House sales have 3 months to be registered. Most of the sales in
the UK are registered within 2 months of selling. Therefore my programme
will always be two months behind the actual figure and won’t be able to
provide the most accurate data to its users. I am unable to resolve this issue
as the government is unfortunately out of my control.

The other limitation related to the government is how far back the sales
go. The earliest sales in the dataset are from 1995 because before then the
value of land sales was not required to be logged with HM Land Registry.
This again cannot be fixed as there are no other datasets with house sales
before 1995 that I can access as they are all behind paywalls and I do not
have the capital to access them. If I had the capital a lot of large banks have
datasets from their mortgages which can often date back hundreds of years.

4.5 Maintenance

Fortunately, there are only two maintenance issues with my programme. One
of the problems is the way the government publish their data. At the moment
they publish their data in CSV format but they could decide to change this
would result in the update module failing so no new data is added. As of right
now, the Land Registry is not planning on changing the way they distribute
their data but that could change.

Another issue is maintaining the front end to be compatible with modern
browsers. Modern browsers are updated frequently resulting in the javascript
API changing and old features being no longer supported and new features
being added to replace them. Then you have to factor in that not all browsers
get these new features at the same time so some browsers will get the new
features before others. This can be combatted by using a javascript bundler
called Babel. Babel converts the Javascript code into vanilla Javascript using
only the most basic functions that are supported on all browsers.

147

Chapter 5

Appendix

5.1 Sales Ingest

5.1.1 init .py

from i n g e s t import Inge s t
import async io
import a t e x i t

i f name == ” main ” :
i n g e s t e r = Inge s t ()
a t e x i t . r e g i s t e r (async io . run , i n g e s t e r . remove status

())
async io . run (i n g e s t e r . main loop ())

5.1.2 ingest.py

import os
import re
import socket
from datet ime import datet ime
from p i c k l e import l oads
from typing import L i s t

148

from asyncpg import connect
from c o n f l u e n t k a f k a import Consumer
from dotenv import l oad dotenv

class Inge s t () :
def i n i t (s e l f , t e s t=Fal se) −> None :

s e l f . l oad env ()
i f not t e s t :

s e l f . consumer = Consumer ({
’ boots t rap . s e r v e r s ’ : s e l f . KAFKA,
’ group . id ’ : ’INGESTER ’ ,
’ auto . o f f s e t . r e s e t ’ : ’ e a r l i e s t ’

})
s e l f . a r e a s = [” postcode ” , ” s t r e e t ” , ”town” , ”

d i s t r i c t ” , ” county ” , ” outcode ” , ” area ” , ”
s e c t o r ”]

Regex to s p l i t pos tcode in t o inward , outward
& area

s e l f . p o s t c o d e r e = re . compile (” ˆ (? : (?P<a1>[Gg
] [I i] [Rr]) (?P<d1>) (?P<s1>0) (?P<u1>[Aa]{2}))
| (? : (? : (? : (? P<a2>[A−Za−z]) (?P<d2> [0 −9]{1 ,2})
) | (? : (? : (? P<a3>[A−Za−z] [A−Ha−hJ−Yj−y]) (?P<d3
> [0 −9]{1 ,2})) | (? : (? : (? P<a4>[A−Za−z]) (?P<d4
> [0 −9][A−Za−z])) | (? : (? P<a5>[A−Za−z] [A−Ha−hJ−
Yj−y]) (?P<d5> [0 −9]?[A−Za−z]))))) (?P<s2
>[0 −9]) (?P<u2>[A−Za−z]{2})) $” , f l a g s=re .
IGNORECASE)

def l oad env (s e l f) :
Loads the enviroment v a r i a b l e s
l oad dotenv ()
s e l f . DB = os . env i ron . get (”DBNAME” , ” house data

”)
s e l f . USERNAME = os . env i ron . get (”POSTGRES USER”

)

149

s e l f . PASSWORD = os . env i ron . get (”
POSTGRES PASSWORD”)

s e l f . HOST = os . env i ron . get (”POSTGRES HOST”)
s e l f . KAFKA = os . env i ron . get (”KAFKA”)

async def connect db (s e l f) :
s e l f . conn = await connect (f ” p o s t g r e s q l ://{ s e l f

. USERNAME} :{ s e l f . PASSWORD}@{ s e l f . HOST}/{
s e l f . DB}”)

def e x t r a c t p a r t s (s e l f , postcode : str) −> L i s t [str
] :
try :

i f (par t s := s e l f . p o s t c o d e r e . f i n d a l l (
postcode) [0]) != None : # s p l i t s
pos tcode & checks i f i t i s v a l i d

par t s = l i s t (f i l t e r (lambda x : x != ’ ’ ,
pa r t s)) # Removes empty par t s from
pos tcode

outcode = par t s [0] + par t s [1]
area = par t s [0]
s e c t o r = par t s [0] + par t s [1] + ” ” +

par t s [2]
return [outcode , area , s e c t o r] #

Returns the par t s o f the pos tcode
else :

return [”” , ”” , ””]
except IndexError :

return [”” , ”” , ””]

async def s e t s t a t u s (s e l f , s t a t u s : str) −> None :
consumer id = socket . gethostname ()
try :

await s e l f . conn . execute (”INSERT INTO
s e t t i n g s (name , data) VALUES ($1 , $2) ; ” ,
consumer id , s t a t u s)

except :

150

await s e l f . conn . execute (”DELETE FROM
s e t t i n g s WHERE name = $1” , consumer id)

await s e l f . conn . execute (”INSERT INTO
s e t t i n g s (name , data) VALUES ($1 , $2) ; ” ,
consumer id , s t a t u s)

async def remove status (s e l f) :
consumer id = socket . gethostname ()
print (”DELETING”)
await s e l f . conn . execute (”DELETE FROM s e t t i n g s

WHERE name = $1” , consumer id)

async def i n s e r t a r e a s (s e l f , s a l e : L i s t ,
po s t code pa r t s : L i s t [str]) :

a r ea s = [s a l e [3] , s a l e [9] , s a l e [1 1] , s a l e [1 2] ,
s a l e [1 3] ,

po s t code pa r t s [0] , po s t code pa r t s [1] ,
po s t code pa r t s [2]] # Extrac t s areas
va l u e s from sa l e

va lue s = []
for idx , a r ea type in enumerate (s e l f . a r e a s) :

a rea data = (area type , a reas [idx])
va lue s . append (area data)

await s e l f . conn . executemany (”””INSERT INTO
areas (area type , area)

VALUES ($1 , $2) ON
CONFLICT (area type ,
area) DO NOTHING;

””” , va lue s)

async def main loop (s e l f) :
print (”Waiting f o r messages ”)
await s e l f . connect db ()
s e l f . consumer . s u b s c r i b e ([” new sa l e s ”])
while True :

await s e l f . s e t s t a t u s (”WAITING”)
msg = s e l f . consumer . p o l l (1 . 0) # Fetches

the l a t e s t message from ka fka

151

await s e l f . s e t s t a t u s (”PROCESSING”)
i f msg i s None : #Checks the message i s n t

empty
continue

i f msg . e r r o r () : # Checks t h e r e are no
e r ro r s
print (”Consumer e r r o r : {}” . format (msg .

e r r o r ()))
continue

s a l e : L i s t = loads (msg . va lue ()) # Converts
the b y t e s in t o a python l i s t

await s e l f . p r o c e s s s a l e (s a l e)

async def p r o c e s s s a l e (s e l f , s a l e) :
async with s e l f . conn . t r a n s a c t i o n () :

i f s a l e [−1] in [”C” , ”D”] :
await s e l f . conn . execute (”DELETE FROM

s a l e s WHERE t u i=$1” , s a l e [0]) #
Dele te s a l e

i f s a l e [−1] in [”A” , ”C”] :
po s t code pa r t s = s e l f . e x t r a c t p a r t s (

s a l e [3]) # Fetches the pos tcode
par t s

await s e l f . i n s e r t a r e a s (sa l e ,
po s t code pa r t s)

houseID = str (s a l e [7]) + str (s a l e [8]) +
str (s a l e [3])

await s e l f . conn . execute (”INSERT INTO
postcodes \

 (postcode , s t r e e t , town
, d i s t r i c t , county , outcode , area , s e c t o r) \

 VALUES ($1 , $2 , $3 , $4 , $5 ,
$6 , $7 , $8) ON CONFLICT (postcode) DO NOTHING; ” ,

s a l e [3] , s a l e [9] , s a l e
[1 1] , s a l e [1 2] , s a l e
[1 3] , po s t code pa r t s
[0] ,

152

pos t code pa r t s [1] ,
po s t code pa r t s [2])
Ins e r t i n t o
pos tcode t a b l e

await s e l f . conn . execute (”INSERT INTO
houses (houseID , PAON, SAON, type ,
postcode) \

 VALUES ($1 , $2 , $3 , $4 , $5)
 ON CONFLICT (houseID) DO NOTHING; ” ,

houseID , s a l e [7] , s a l e
[8] , s a l e [4] , s a l e
[3]) # Ins e r t i n t o
house t a b l e

new = True i f s a l e [5] == ”Y” else False
Convets to boo lean type

f r e e h o l d = True i f s a l e [6] == ”F” else
False # Converts to boo lean type

date = datet ime . s t rpt ime (s a l e [2] , ”%Y−%
m−%d %H:%M”) # Converts s t r i n g to
date t ime o b j e c t

await s e l f . conn . execute (”INSERT INTO
s a l e s (tu i , p r i c e , date , new ,
f r e eho ld , ppd cat , houseID) \

 VALUES ($1 , $2 , $3 , $4 , $5 , $6 ,
$7) ON CONFLICT (t u i) DO NOTHING; ” ,

s a l e [0] , int (s a l e [1]) , date
, new , f r e eho ld , s a l e
[1 4] , houseID) # Ins e r t
i n t o s a l e s t a b l e

i f name == ” main ” :
import async io
x = Inge s t ()
async io . g e t e v e n t l o o p () . ru n u n t i l c o mp l e t e (x .

main loop ())

153

5.1.3 Dockerfile

FROM python : 3 . 9 . 7

WORKDIR /app

COPY . / i n g e s t e r .
COPY . / requi rements . txt .

RUN python3 −m pip i n s t a l l −−upgrade pip s e t u p t o o l s
wheel

RUN python3 −m pip i n s t a l l −r requ i rements . txt

CMD [”python3” , ” i n i t . py”]

5.1.4 requirements.txt

asyncpg ==0.27.0
c e r t i f i ==2022.12.7
con f luent −kafka ==2.0.2
python−dotenv ==0.21.1
sentry−sdk ==1.14.0
u r l l i b 3 ==1.26.14

5.2 Update Checker

5.2.1 init .py

from check update import checkForUpdate

i f name == ” main ” :

154

x = checkForUpdate ()
x . run ()

5.2.2 check update.py

import time
from csv import r eader
from hash l i b import sha256
from i o import Str ingIO
from os import envi ron
from p i c k l e import dumps

import r e q u e s t s
import schedu le
from c o n f l u e n t k a f k a import Producer
from dotenv import l oad dotenv
from psycopg2 import connect
from r e q u e s t s import get

class checkForUpdate () :
def i n i t (s e l f) −> None :

s e l f . f i l e l i n k = ” http :// prod . pub l i cdata .
l a n d r e g i s t r y . gov . uk . s3−website−eu−west −1.
amazonaws . com/pp−monthly−update . txt ”

s e l f . l oad env ()
s e l f . conn = connect (f ”dbname={ s e l f . DB} \

 u se r={ s e l f . USERNAME} password={ s e l f .
PASSWORD} \

 host={ s e l f . HOST}”) # Connect to the
database

s e l f . cu r = s e l f . conn . cu r so r ()
s e l f . producer = Producer ({ ” boots t rap . s e r v e r s ” :

s e l f . KAFKA}) # Connect to Kafka c l u s t e r

def l oad env (s e l f) :
Loads enviroment v a r i a b l e s

155

l oad dotenv ()
s e l f . DB = environ . get (”DBNAME” , ” house data ”)
s e l f . USERNAME = environ . get (”POSTGRES USER”)
s e l f . PASSWORD = environ . get (”POSTGRES PASSWORD

”)
s e l f . HOST = environ . get (”POSTGRES HOST”)
s e l f . KAFKA = environ . get (”KAFKA”)

def f e t c h f i l e (s e l f) :
print (” f e t c h i n g f i l e ”)
f i l e = get (s e l f . f i l e l i n k) . content # Download

monthly f i l e from land r e g i s t r y
f i l e h a s h = sha256 (f i l e) . hexd ige s t () #

Ca l cu l a t e hash o f f i l e
s e l f . cu r . execute (”SELECT data FROM s e t t i n g s

WHERE name=’ update hash ’ ; ”)
prev hash = s e l f . cu r . f e t chone () # Check to

see i f f i l e has been i n s e r t e d a l r eady
i f prev hash i s not None :

prev hash = prev hash [0]
i f f i l e h a s h != prev hash : # Compare hash to

hash o f o l d f i l e
print (”New f i l e be ing uploaded ”)
s e l f . update database (f i l e , f i l e h a s h)

else :
print (”No new f i l e yet ”)

def update database (s e l f , f i l e , f i l e h a s h) :
s e l f . s e n d f i l e d b (f i l e)
s e l f . cu r . execute (”””UPDATE s e t t i n g s SET data =

%s
WHERE name=’update hash ’

r e tu rn ing name ; ””” ,
(f i l e h a s h ,))

Changes prev ious hash to most recen t one

i f s e l f . cu r . f e t chone () i s None :

156

s e l f . cu r . execute (”””INSERT INTO s e t t i n g s (
name , data)

VALUES (’ update hash ’ , %s
) ””” ,

(f i l e h a s h ,))
In s e r t s update hash row i f i t doesn ’ t

e x i s t
s e l f . conn . commit ()

def s e n d f i l e d b (s e l f , f i l e) :
c s v f i l e = reader (Str ingIO (f i l e . decode (”UTF−8”)

))
c s v f i l e = map(lambda x : dumps ([x [0] [1 : − 1]] + [

i for i in x [1 :]]) , c s v f i l e) # Remove
braces from t u i

while True : # While i s qu i c k e r than f o r loop
try :

l i s t b y t e s = next (c s v f i l e) # Converts
l i s t to by t e array

while True :
try :

s e l f . producer . produce (”
new sa l e s ” , l i s t b y t e s) #
Send each s a l e as s t r i n g to
ka fka

s e l f . producer . p o l l (0)
break

except Buf f e rEr ro r :
print (time . time () , ” Flushing ”)
s e l f . producer . f l u s h ()
print (time . time () , ” Fin i shed

f l u s h ”)
except S t o p I t e r a t i o n :

s e l f . producer . f l u s h ()
break

s e l f . cu r . execute (”””UPDATE s e t t i n g s SET data =
%s

157

WHERE name=’ l a s t u p da t e d ’ ; ”””
,

(time . time () ,))
s e l f . a g g r e g a t e c o u n t i e s ()

def a g g r e g a t e c o u n t i e s (s e l f) :
s e l f . cu r . execute (”SELECT ∗ FROM s e t t i n g s WHERE

 name = ’ l a s t updated ’ OR name = ’
l a s t a g g r e g a t e d c o u n t i e s ’ ORDER BY name DESC
; ”)

t imes = s e l f . cu r . f e t c h a l l ()
print (t imes)
i f f loat (t imes [0] [1]) > f loat (t imes [1] [1]) :

s e l f . cu r . execute (”SELECT ∗ FROM s e t t i n g s
WHERE data = ’WAITING ’ ; ”)

r e s = s e l f . cu r . f e t c h a l l ()
i f len (r e s) == 4 :

s e l f . cu r . execute (”SELECT area FROM
areas WHERE area type = ’ area ’ ; ”)

count i e s = s e l f . cu r . f e t c h a l l ()
s e l f . cu r . execute (”””UPDATE s e t t i n g s

SET data = ’ t rue ’
WHERE name=’

a g r e g a t i n g c oun t i e s
’ ; ”””)

s e l f . conn . commit ()
for county in count i e s :

county = county [0] i f county != (’ ’
,) else ’CH’

resp = r e q u e s t s . get (f ” https : // api .
house s ta t s . co . uk/ api /v1/ ana lyse /
area /{ county}”)

print (county , re sp . j son () [” s t a t u s ”
])

i f county == count i e s [− 1] [0] :
u r l = resp . j son () [” r e s u l t ”]
while True :

re sp = r e q u e s t s . get (u r l)

158

i f re sp . j son () [” s t a t u s ”] ==
”SUCCESS” :
s e l f . cu r . execute (”

UPDATE s e t t i n g s SET
data = %s WHERE name
=’
l a s t a g g r e g a t e d c o u n t i e s
’ ; ” ,

(time .
time
() ,)
)

s e l f . cu r . execute (”
UPDATE s e t t i n g s SET
data = ’ f a l s e ’ WHERE
 name=’
a g r e g a t i n g c o u n t i e s
’ ; ”)

s e l f . conn . commit ()
break

else :
time . s l e e p (5)

def run (s e l f) :
s chedu le . every (5) . minutes . do (s e l f . f e t c h f i l e)
while True :

s chedu le . run pending ()
time . s l e e p (30)

i f name == ” main ” :
x = checkForUpdate ()
x . a g g r e g a t e c o u n t i e s ()
x . run ()

5.2.3 Dockerfile

FROM python : 3 . 9 . 7

159

WORKDIR /app

COPY . / checker .
COPY . / requi rements . txt .

RUN python3 −m pip i n s t a l l −−upgrade pip s e t u p t o o l s
wheel

RUN python3 −m pip i n s t a l l −r requ i rements . txt

CMD [”python3” , ” i n i t . py”]

5.2.4 requirements.txt

c e r t i f i ==2022.12.7
charset−normal i z e r ==3.0.1
con f luent −kafka ==2.0.2
idna==3.4
psycopg2 ==2.9.5
python−dotenv ==0.21.1
r e q u e s t s ==2.28.2
schedu le ==1.1.0
sentry−sdk ==1.15.0
u r l l i b 3 ==1.26.14

5.3 Data Processor

5.3.1 init .py

from main import Proces sor

i f name == ” main ” :
print (” load ing ”)
p r o c e s s o r = Proces sor ()

160

print (”Running”)
p r o c e s s o r . main loop ()

5.3.2 aggregations.py

from typing import Dict

import p o l a r s as p l
from l oad data import Loader
from datet ime import t imede l ta

class Aggregator () :
def i n i t (s e l f , data : Loader) −> None :

s e l f . data = data . data
s e l f . l a t e s t d a t e = data . l a t e s t d a t e

def c a l c a v e r a g e p r i c e (s e l f) −> Dict :
df = s e l f . data . p a r t i t i o n b y (” type ” , a s d i c t=

True)
house types means = {}
for house type in df :

temp df = df [house type]
house types means [house type] = temp df \

. s o r t (”
date
”) \

.
groupby dynamic
(”
date
” ,
every
=”1
mo”)
\

. agg (p l
. c o l

161

(”
p r i c e
”) .
l og
() .
mean
() .
exp
())
\

.
t o d i c t
(
a s s e r i e s
=
False
)

a l l s a l e s = s e l f . data . l a zy ()
std = a l l s a l e s . s e l e c t (p l . c o l (” p r i c e ”)) . s td () .

c o l l e c t () [0 , 0]
mean = a l l s a l e s . s e l e c t (p l . c o l (” p r i c e ”)) . mean ()

. c o l l e c t () [0 , 0]
temp df = a l l s a l e s . f i l t e r ((p l . c o l (” p r i c e ”) <

mean+(2∗ std)))
house types means [” a l l ”] = a l l s a l e s \

. s o r t (” date ”) \

. groupby dynamic (”
date ” , every=”1
mo”) \

. agg (p l . c o l (” p r i c e ”
) . l og () . mean () .
exp ()) \

. c o l l e c t () \

. t o d i c t (a s s e r i e s=
Fal se)

data = {
” type ” : [key for key in sorted (

house types means)] ,

162

” p r i c e s ” : [house types means [key] [” p r i c e ”]
for key in sorted (house types means)] ,

” dates ” : house types means [” a l l ”] [” date ”]
}
return data

def r e m o v e o u t l i e r s (s e l f , d f : p l . DataFrame) :
std = df . s e l e c t (p l . c o l (” p r i c e ”)) . s td () [0 , 0]
mean = df . s e l e c t (p l . c o l (” p r i c e ”)) . mean () [0 , 0]
df = df . f i l t e r (p l . c o l (” p r i c e ”) < mean + (3∗ std)

)
return df

def c a l c t y p e p r o p o r t i o n s (s e l f) −> Dict :
df = s e l f . data
df = df . unique (subset =[” house id ”])
df = df . groupby (” type ”) . count ()
data = df . t o d i c t (a s s e r i e s=False)
return data

def ca lc monthly vo lume (s e l f) −> Dict :
df = s e l f . data . p a r t i t i o n b y (” type ” , a s d i c t=

True)
monthly volumes = {}
for house type in df :

temp df = df [house type] . l a zy ()
volume = temp df \

. s o r t (” date ”) \

. groupby dynamic (” date ” , every=”1mo”) \

. agg (p l . c o l (” p r i c e ”) . count () . a l i a s (”
volume”)) \

. c o l l e c t () \

. t o d i c t (a s s e r i e s=False)
monthly volumes [house type] = volume

monthly volumes [” a l l ”] = s e l f . data . s o r t (” date ”
) \

163

. groupby dynamic (” date ” , every=”1mo”) \

. agg (p l . c o l (” p r i c e ”) . count () . a l i a s (”
volume”)) \

. t o d i c t (a s s e r i e s=False)

data = {
” type ” : [key for key in sorted (

monthly volumes)] ,
”volume” : [monthly volumes [key] [”volume”]

for key in sorted (monthly volumes)] ,
” dates ” : monthly volumes [” a l l ”] [” date ”]

}
return data

def ca l c month ly pr i c e vo lume (s e l f) −> Dict :
df = s e l f . data . p a r t i t i o n b y (” type ” , a s d i c t=

True)
monthly pr ice volume = {}
for house type in df :

temp df = df [house type] . l a zy ()
volume = temp df \

. s o r t (” date ”) \

. groupby dynamic (” date ” , every=”1mo”) \

. agg (p l . c o l (” p r i c e ”) .sum() . a l i a s (”
volume”)) \

. c o l l e c t () \

. t o d i c t (a s s e r i e s=False)
monthly pr ice volume [house type] = volume

monthly pr ice volume [” a l l ”] = s e l f . data . s o r t (”
date ”) \

. groupby dynamic (” date ” , every=”1mo”) \

. agg (p l . c o l (” p r i c e ”) .sum() . a l i a s (”
volume”)) \

. t o d i c t (a s s e r i e s=False)
data = {

” type ” : [key for key in sorted (
monthly pr ice volume)] ,

164

”volume” : [monthly pr ice volume [key] [”
volume”] for key in sorted (
monthly pr ice volume)] ,

” dates ” : monthly pr ice volume [” a l l ”] [” date ”
]

}
return data

def c a l c a l l p e r c (s e l f) −> Dict :
data = s e l f . data . p a r t i t i o n b y (” type ” , a s d i c t=

True)
monthly perc = {}
for house type in data :

monthly perc [house type] = s e l f .
c a l c i n d p e r c e n t a g e (data [house type]) .

t o d i c t (a s s e r i e s=False)
monthly perc [” a l l ”] = s e l f . c a l c i n d p e r c e n t a g e

(s e l f . data) . t o d i c t (a s s e r i e s=False)
return monthly perc

def c a l c i n d p e r c e n t a g e (s e l f , d f : p l . DataFrame) −>
pl . DataFrame :
df = df . s o r t (” date ”) \

. groupby dynamic (” date ” , every=”1mo”) \

. agg (p l . c o l (” p r i c e ”) . l og () . mean () . exp ()
. a l i a s (” a v g p r i c e ”))

df = df . with columns ([
p l . c o l (” date ”) . dt . month () . a l i a s (”month”) ,
p l . c o l (” date ”) . dt . year () . a l i a s (” year ”)

])
df = df . groupby (”month”) . apply (s e l f .

c a l c pe r c en tage s months)
df = df . drop ([” year ” , ”month” , ” prev year ” , ”

a v g p r i c e ”])
df = df . s o r t (” date ”)
return df

165

def ca l c pe r c en tage s months (s e l f , data : p l .
DataFrame) :

df = data . s o r t (” date ”) . with columns (
p l . c o l (” a v g p r i c e ”) . s h i f t () . a l i a s (”

prev year ”)
)
df = df . f i l t e r (p l . c o l (” prev year ”) . i s n o t n u l l

())
df = df . with columns (

(((p l . c o l (” a v g p r i c e ”)−pl . c o l (” prev year ”))
/ p l . c o l (” a v g p r i c e ”) ∗100) /12) . a l i a s (”
perc change ”)

)
return df

def q u i c k s t a t s (s e l f , data) −> Dict [str , f loat] :
try :

current month = data [” a v e r a g e p r i c e ”] [”
dates ”] [−2]

cu r r en t ave rage = data [” a v e r a g e p r i c e ”] [”
p r i c e s ”] [4] [− 2]

prev average = data [” a v e r a g e p r i c e ”] [”
p r i c e s ”] [4] [− 3]

cur r ent ave rage change = round (100∗ (
cur rent average −prev average) /
prev average , 2)

except Exception :
return {

” current month ” : 0 ,
” a v e r a g e p r i c e ” : 0 ,
” average change ” : 0 ,
” c u r r e n t s a l e s v o l u m e ” : 0 ,
” sa l e s vo lume change ” : 0 ,
” cu r r en t p r i c e vo lume ” : 0 ,
” pr i ce vo lume change ” : 0 ,
” e x p e n s i v e s a l e ” : 0

}

166

try :
c u r r e n t s a l e s v o l = data [”

monthly sa les vo lume ”] [”volume”] [4] [− 2]
p r e v s a l e s v o l = data [” monthly sa les vo lume

”] [”volume”] [4] [− 3]
c u r r e n t s a l e s v o l c h a n g e = round (100∗ (

c u r r e n t s a l e s v o l −p r e v s a l e s v o l) /
p r e v s a l e s v o l , 2)

except IndexError :
c u r r e n t s a l e s v o l = 0
c u r r e n t s a l e s v o l c h a n g e = 0

try :
c u r r e n t p r i c e v o l = data [”

monthly pr ice volume ”] [”volume”] [4] [− 2]
p r e v p r i c e v o l = data [” monthly pr ice volume

”] [”volume”] [4] [− 3]
c u r r e n t p r i c e v o l c h a n g e = round (100∗ (

c u r r e n t p r i c e v o l −p r e v p r i c e v o l) /
p r e v p r i c e v o l , 2)

except IndexError :
c u r r e n t p r i c e v o l = 0
c u r r e n t p r i c e v o l c h a n g e = 0

e x p e n s i v e s a l e = (s e l f . data
. f i l t e r (p l . c o l (” date ”) . i s be tween (

current month , current month + t imede l ta
(days=31)))

. f i l t e r (p l . c o l (” p r i c e ”) == pl . c o l (” p r i c e ”) .
max())

) [0 , 0]

q u i c k s t a t s = {
” current month ” : current month ,
” a v e r a g e p r i c e ” : cur rent average ,
” average change ” : cur rent average change ,
” c u r r e n t s a l e s v o l u m e ” : c u r r e n t s a l e s v o l ,

167

” sa l e s vo lume change ” :
c u r r e n t s a l e s v o l c h a n g e ,

” cu r r en t p r i c e vo lume ” : c u r r e n t p r i c e v o l ,
” pr i ce vo lume change ” :

c u r r e n t p r i c e v o l c h a n g e ,
” e x p e n s i v e s a l e ” : e x p e n s i v e s a l e

}
return q u i c k s t a t s

def g e t a l l d a t a (s e l f) −> Dict :
data = {

” a v e r a g e p r i c e ” : s e l f . c a l c a v e r a g e p r i c e ()
,

” type p ropo r t i on s ” : s e l f .
c a l c t y p e p r o p o r t i o n s () ,

” monthly sa les vo lume ” : s e l f .
ca lc monthly vo lume () ,

” monthly pr ice volume ” : s e l f .
c a l c month ly pr i c e vo lume () ,

” percentage change ” : s e l f . c a l c a l l p e r c ()
}
data [” q u i c k s t a t s ”] = s e l f . q u i c k s t a t s (data)
return data

i f name == ” main ” :
import time
import psycopg2

s t a r t = time . time ()
conn = psycopg2 . connect (” p o s t g r e s q l : // house data :

lriFahwbJwfv2388neiluOMI@192 . 1 6 8 . 4 . 3 0 : 5 4 3 2 /
house data ”)

da ta l oade r = Loader (”CH3 5” , ” s e c t o r ” , conn . cu r so r
())

print (f ” loaded data − { time . time () − s t a r t }”)
agg = Aggregator (da ta l oade r)

168

data = agg . g e t a l l d a t a ()

i n i t a l p r i c e = 249000
f i n a l p r i c e = 249000
for month in data [” percentage change ”] [”S”] [”

perc change ”] [2 8 1 :] :
f i n a l p r i c e ∗= 1+(month/100)

print (f i n a l p r i c e)

5.3.3 load data.py

from datet ime import datetime , t imede l ta

import p o l a r s as p l
from typing import L i s t
from d a t e u t i l . r e l a t i v e d e l t a import r e l a t i v e d e l t a

class Loader () :
def i n i t (s e l f , area : str , a r ea type : str ,

db cur) −> None :
s e l f . cu r = db cur
s e l f . a r ea type = area type . lower ()
s e l f . area = area . upper ()
s e l f . a r e a s = [” postcode ” , ” s t r e e t ” , ”town” , ”

d i s t r i c t ” , ” county ” , ” outcode ” , ” area ” , ”
s e c t o r ”]

i f s e l f . area == ”” and s e l f . a r ea type == ”” :
s e l f . cu r . execute (”””SELECT s . pr ice , s . date

, h . type , h . paon , h . saon , h . postcode , p .
s t r e e t , p . town , h . house id

FROM pos tcodes AS p
INNER JOIN houses AS h ON p .

pos tcode = h . pos tcode
INNER JOIN s a l e s AS s ON h . house id

= s . house id AND h . type != ’O’
WHERE s . ppd ca t = ’A ’ ; ”””)

data = s e l f . cu r . f e t c h a l l ()

169

s e l f . f o rmat d f (data)
else :

i f s e l f . a r ea type not in s e l f . a r e a s :
raise ValueError (” I n v a l i d area type ”)

else :
i f s e l f . v e r i f y a r e a () :

data = s e l f . f e t c h a r e a s a l e s ()
s e l f . f o rmat d f (data)

def v e r i f y a r e a (s e l f) :
s e l f . cu r . execute (f ”SELECT postcode FROM

postcodes WHERE { s e l f . a r ea type } = %s LIMIT
1 ; ” , (s e l f . area ,))

i f s e l f . cu r . f e t c h a l l () i s not [] :
return True

else :
raise ValueError (f ” I n v a l i d { s e l f . a r ea type }

 entered ”)

def f e t c h a r e a s a l e s (s e l f) −> L i s t :
query = f ”””SELECT s . pr ice , s . date , h . type , h .

paon , h . saon , h . postcode , p . s t r e e t , p . town ,
h . house id

FROM pos tcodes AS p
INNER JOIN houses AS h ON p . pos tcode =

h . pos tcode AND p .{ s e l f . a r ea t ype } =
%s

INNER JOIN s a l e s AS s ON h . house id = s .
house id AND h . type != ’O’

WHERE s . ppd ca t = ’A’ AND s . date < %s ;
”””

s e l f . cu r . execute (query , (s e l f . area , s e l f .
l a t e s t d a t e))

data = s e l f . cu r . f e t c h a l l ()
i f data == [] :

raise ValueError (f ”No s a l e s f o r area { s e l f .
area }”)

else :

170

return data

def f o rmat d f (s e l f , data) :
s e l f . data = pl . DataFrame (data ,

columns=[” p r i c e ” , ”
date ” , ” type ” , ”
paon” , ” saon ” ,

” postcode ”
, ”
s t r e e t ”
, ”town”
, ”
house id
”] ,

o r i e n t=”row”)
s e l f . data = s e l f . data . with column (

p l . c o l (’ date ’) . apply (lambda x : datet ime (∗x .
t imetup le () [: −4])) . a l i a s (”dt”)

)
s e l f . data = s e l f . data . drop (” date ”)
s e l f . data = s e l f . data . with column (

p l . c o l (”dt”) . a l i a s (” date ”)
)
s e l f . data = s e l f . data . drop (”dt”)

@property
def data (s e l f) −> pl . DataFrame :

return s e l f . data

@property
def l a t e s t d a t e (s e l f) :

s e l f . cu r . execute (”SELECT date FROM s a l e s ORDER
 BY date DESC LIMIT 1 ; ”)

l a t e s t d a t e = s e l f . cu r . f e t chone ()
i f l a t e s t d a t e i s not None :

l a t e s t d a t e = datet ime . combine (l a t e s t d a t e
[0] , datet ime .min . time ())

171

i f l a t e s t d a t e > (datet ime . now () −
t imede l ta (days=60)) :

s t a r t = datet ime . now () . r e p l a c e (day=1)
return s t a r t − r e l a t i v e d e l t a (months=2)

else :
return l a t e s t d a t e [0]

i f name == ” main ” :
import psycopg2
conn = psycopg2 . connect (” p o s t g r e s q l : // house data :

lriFahwbJwfv2388neiluOMI@192 . 1 6 8 . 4 . 3 0 : 5 4 3 2 /
house data ”)

l oade r = Loader (”CH” , ” area ” , conn . cu r so r ())
print (l oade r . l a t e s t d a t e)
print (l oade r . data . head ())

5.3.4 main.py

import os
import time
from datet ime import datet ime
from p i c k l e import l oads
from typing import Dict

import psycopg2
from agg r ega t i on s import Aggregator
from c o n f l u e n t k a f k a import Consumer
from l oad data import Loader
from pymongo import MongoClient

class Proces sor () :
def i n i t (s e l f) :

s e l f . l oad env ()
s e l f . s q l c o n n = psycopg2 . connect (f ” p o s t g r e s q l

://{ s e l f . SQL USERNAME} :{ s e l f . SQL PASSWORD}
@{ s e l f . SQL HOST} :5432/ house data ”)

172

s e l f . cu r = s e l f . s q l c o n n . cu r so r ()
s e l f . mongo conn = MongoClient (f ”mongodb ://{

s e l f . MONGO USERNAME} :{ s e l f . MONGO PASSWORD}
@{ s e l f . MONGO HOST} :27017/? authSource=
house data ”)

s e l f . mongo db = s e l f . mongo conn [” house data ”]
s e l f . consumer = Consumer ({

’ boots t rap . s e r v e r s ’ : s e l f . KAFKA,
’ group . id ’ : ’PROCESSOR’ ,
’ auto . o f f s e t . r e s e t ’ : ’ e a r l i e s t ’

})

def l oad env (s e l f) :
Loads the enviroment v a r i a b l e s
s e l f . DB = os . env i ron . get (”DBNAME” , ” house data

”)
s e l f . SQL USERNAME = os . env i ron . get (”

POSTGRES USER”)
s e l f . SQL PASSWORD = os . env i ron . get (”

POSTGRES PASSWORD”)
s e l f . SQL HOST = os . env i ron . get (”POSTGRES HOST”

)
s e l f . KAFKA = os . env i ron . get (”KAFKA”)
s e l f . MONGO HOST = os . env i ron . get (”MONGO HOST”)
s e l f . MONGO USERNAME = os . env i ron . get (”

MONGOUSERNAME”)
s e l f . MONGO PASSWORD = os . env i ron . get (”

MONGOPASSWORD”)

def main loop (s e l f) −> None :
s e l f . consumer . s u b s c r i b e ([” query queue ”])
print (”Waiting f o r q u e r i e s ”)
while True :

msg = s e l f . consumer . p o l l (1 . 0) # Fetches
the l a t e s t message from ka fka

i f msg i s None : #Checks the message i s n t
empty
continue

173

i f msg . e r r o r () : # Checks t h e r e are no
e r ro r s
print (”Consumer e r r o r : {}” . format (msg .

e r r o r ()))
continue

query : tuple = loads (msg . va lue ()) # (area ,
a rea t ype)

query = tuple (map(lambda x : x . upper () ,
query)) # Makes a l l i tems upper case

print (f ”{ time . time () } − {query [0] } ({ query
[1] }) ”)

i f not s e l f . check cache (∗ query) :
print (query , ”− Aggregat ing data ”)
s e l f . g e t s t a t s (∗ query)

else :
print (query , ”− Cache h i t ”)
continue

def check cache (s e l f , area , a r ea type) −> bool :
que ry id = s e l f . c a l c q u e r y i d (area , a r ea type)
query = s e l f . mongo db . cache . f i nd o ne ({ ” i d ” :

query id })
i f query i s not None :

l a s t updated = s e l f . g e t l a s t u p d a t e d ()
i f query [” l a s t updated ”] < l a s t updated :

return False
return True

else :
return False

def g e t l a s t u p d a t e d (s e l f) :
s e l f . cu r . execute (”SELECT ∗ FROM s e t t i n g s WHERE

 name = ’ l a s t updated ’ ”)
l a s t updated = s e l f . cu r . f e t chone ()
i f l a s t updated == None :

return datet ime . fromtimestamp (0)
else :

174

i f l a s t updated [1] i s not None :
return datet ime . fromtimestamp (f loat (

l a s t updated [1]))
else :

return datet ime . fromtimestamp (0)

def g e t s t a t s (s e l f , area : str , a r ea type : str) −>
bool :

l o a d s t a r t = time . time ()
data = s e l f . g e t a r e a d a t a (area , a r ea type)
load t ime = time . time ()− l o a d s t a r t
i f data i s not None :

s t a r t = time . time ()
s t a t s = s e l f . g e t a g g r e g a t i o n (data)
t ime taken = time . time ()−s t a r t
query id = s e l f . c a l c q u e r y i d (area ,

a r ea type)
s e l f . cache query (s ta t s , query id , area ,

area type , t ime taken , l oad t ime)
return True

else :
return False

def cache query (s e l f , s t a t s : Dict , que ry id : str ,
area : str , a r ea type : str , exe t ime : f loat ,
l oad t ime : f loat) :

query = s e l f . mongo db . cache . f i nd o ne ({ ” i d ” :
query id })

i f query i s not None :
s e l f . mongo db . cache . update one (

{” i d ” : que ry id } ,
{” $ s e t ” : {

” data ” : s ta t s ,
” l a s t updated ” : datet ime . now () ,
” exec t ime ” : exe t ime ,
” load t ime ” : l oad t ime
}

175

}
)

else :
document = {

” i d ” : query id ,
” area ” : area ,
” a rea type ” : area type ,
” data ” : s t a t s ,
” l a s t updated ” : datet ime . now () ,
” exec t ime ” : exe t ime ,
” load t ime ” : l oad t ime

}
s e l f . mongo db . cache . i n s e r t o n e (document)

def c a l c q u e r y i d (s e l f , area : str , a r ea type : str)
−> str :
que ry id = (area + area type) . r e p l a c e (” ” , ””)
return query id

def g e t a r e a d a t a (s e l f , area : str , a r ea type : str)
:
try :

i f area == ”ALL” and area type == ”COUNTRY”
:

l od r = Loader (”” , ”” , s e l f . cu r)
else :

l od r = Loader (area , area type , s e l f .
cu r)

return l od r
except Exception as e :

pass # Store error in db wi th the query
data

def g e t a g g r e g a t i o n (s e l f , l oade r : Loader) −> Dict :
agg = Aggregator (l oade r)
data = agg . g e t a l l d a t a ()

176

return data

i f name == ” main ” :
p r o c e s s o r = Proces sor ()
p r o c e s s o r . main loop ()

5.3.5 Dockerfile

FROM python : 3 . 1 0 . 8

WORKDIR /app

COPY . / p r o c e s s o r .
COPY . / requi rements . txt .

RUN python3 −m pip i n s t a l l −−upgrade pip s e t u p t o o l s
wheel

RUN python3 −m pip i n s t a l l −r requ i rements . txt

CMD [”python3” , ” i n i t . py”]

5.3.6 requirements.txt

c e r t i f i ==2022.12.7
con f luent −kafka ==2.0.2
contourpy ==1.0.7
c y c l e r ==0.11.0
dnspython ==2.3.0
f o n t t o o l s ==4.38.0
k i w i s o l v e r ==1.4.4
numpy==1.24.1
packaging ==23.0
Pi l l ow ==9.4.0
p o l a r s ==0.15.18
psycopg2 ==2.9.5

177

pymongo==4.3.3
pypars ing ==3.0.9
python−d a t e u t i l ==2.8.2
sentry−sdk ==1.14.0
s i x ==1.16.0
t y p i n g e x t e n s i o n s ==4.4.0
u r l l i b 3 ==1.26.14

5.4 Web API

5.4.1 init .py

import os
import psycopg2
from c o n f i g import Config
from f l a s k import Flask , current app
from f l a s k c o r s import CORS
from pymongo import MongoClient
from s en t ry sdk . i n t e g r a t i o n s . f l a s k import

F l a s k I n t e g r a t i o n

def c rea te app (c o n f i g c l a s s=Config) −> Flask :
app = Flask (name)
app . c o n f i g . f r om ob jec t (c o n f i g c l a s s)
co r s = CORS(app , r e s o u r c e s={r ”/ api /∗” : {” o r i g i n s ” :

”∗”}})

mongo db = MongoClient (f ”mongodb ://{ app . c o n f i g [’
MONGO USER ’] } : { app . c o n f i g [’MONGOPASSWORD ’]}@{
app . c o n f i g [’MONGO HOST ’]} : 2 7017/? authSource=
house data ”)

sq l db = psycopg2 . connect (f ” p o s t g r e s q l ://{ app .
c o n f i g [’ SQL USER ’] } : { app . c o n f i g [’SQL PASSWORD ’]}
@{app . c o n f i g [’SQL HOST ’]} : 5 4 3 2 / house data ”)

178

with app . app context () :
current app . mongo db = mongo db . house data
current app . sq l db = sq l db

from app . api import bp as api bp
app . r e g i s t e r b l u e p r i n t (api bp , u r l p r e f i x=”/ api /v1”

)

@app . route (”/”)
def checker () :

return ”UP”

return app

5.4.2 config.py

import os
from dotenv import l oad dotenv

load dotenv ()
ba s ed i r = os . path . abspath (os . path . dirname (f i l e))

class Config :
SECRET KEY = os . env i ron . get (’SECRET KEY ’)
SQL USER = os . env i ron . get (”POSTGRES USER”)
SQL PASSWORD = os . env i ron . get (”POSTGRES PASSWORD”)
SQL HOST = os . env i ron . get (”POSTGRES HOST”)
MONGO HOST =os . env i ron . get (”MONGO HOST”)
MONGO USER = os . env i ron . get (”MONGOUSERNAME”)
MONGOPASSWORD = os . env i ron . get (”MONGOPASSWORD”)

5.4.3 api/ init .py

from f l a s k import Bluepr int

179

bp = Bluepr int (” api ” , name)

from app . api import route s

5.4.4 routes.py

import u r l l i b . parse
from datet ime import datet ime
from typing import List , Tuple

from app . api import bp , s e a r c h a r e a f u n c s
from app . c e l e r y import ana ly se ta sk , v a l u a t i o n t a s k
from f l a s k import abort , current app , j s o n i f y , request ,

u r l f o r
from app . api import e p c c e r t
from app . api import country

@bp . route (”/ ana lyse/< s t r i n g : area type>/<s t r i n g : area>”)
def index (area type , area) :

with current app . app context () :
query id = area . upper () + area type . upper ()
r e s u l t = current app . mongo db . cache . f i n d on e ({ ”

i d ” : que ry id })
i f r e s u l t i s None :

task = a n a l y s e t a s k . de lay (area , a r ea type)
return j s o n i f y (

s t a t u s=”ok” ,
t a s k i d=task . id ,
r e s u l t=f ” https : // api . house s ta t s . co . uk{

u r l f o r (’ ap i . f e t c h r e s u l t s ’ , que ry id=
query id) }? t a s k i d={task . id }”

)
else :

return j s o n i f y (
s t a t u s=”ok” ,
r e s u l t=f ” https : // api . house s ta t s . co . uk{

u r l f o r (’ ap i . f e t c h r e s u l t s ’ , que ry id=

180

query id)}”
)

@bp . route (”/ get/< s t r i n g : query id>”)
def f e t c h r e s u l t s (query id) :

t a s k i d = reque s t . a rgs . get (” t a s k i d ” , None)
i f t a s k i d i s not None :

task = a n a l y s e t a s k . AsyncResult (t a s k i d)
i f task . s t a t e == ”PENDING” :

return {
” s t a t u s ” : task . s t a t e

}
else :

que ry id = task . wait ()
with current app . app context () :

r e s u l t = current app . mongo db . cache .
f i nd on e ({ ” i d ” : que ry id })

return {
” s t a t u s ” : task . s ta te ,
” r e s u l t ” : r e s u l t

}
else :

with current app . app context () :
r e s u l t = current app . mongo db . cache .

f i n d o ne ({ ” i d ” : que ry id })
i f r e s u l t i s not None :

return {
” s t a t u s ” : ”SUCCESS” ,
” r e s u l t ” : r e s u l t

}
else :

return {
” s t a t u s ” : ”FAILED”

}

@bp . route (”/ search/< s t r i n g : query>”)
def s e a r c h a r e a (query) :

181

query = u r l l i b . parse . unquote (query) . upper ()
q u e r y f i l t e r = reques t . a rgs . get (” f i l t e r ” , None)

s q l q u e r y = s e a r c h a r e a f u n c s . g e n e r a t e s q l q u e r y (
query , q u e r y f i l t e r=q u e r y f i l t e r)

i f s q l q u e r y == ”” :
return ” Fa i l ed to generate query ” , 500

with current app . app context () :
cur = current app . sq l db . cu r so r ()
cur . execute (s q l q u e r y)
r e s u l t s : L i s t [Tuple [str , str]] = cur . f e t c h a l l ()

i f len (r e s u l t s) > 0 :
s o r t e d r e s = s e a r c h a r e a f u n c s . s o r t r e s u l t s (

r e s u l t s)
return j s o n i f y (

r e s u l t s=s o r t e d r e s ,
found=True

)
else :

return j s o n i f y (
r e s u l t s=None ,
found=False

)

@bp . route (”/ f i n d/< s t r i n g : postcode>”)
def s ea r ch house s (postcode) :

s q l q u e r y = ”””SELECT h . type , h . paon , h . saon , h .
postcode , p . s t r e e t , p . town , p . county

FROM pos tcodes AS p
INNER JOIN houses AS h ON p .

pos tcode = h . pos tcode AND p .
pos tcode = %s ; ”””

with current app . app context () :
cur = current app . sq l db . cu r so r ()
cur . execute (sq l query , (postcode . upper () ,))

182

r e s u l t s : L i s t [Tuple [str , str , str , str , str , str]] =
cur . f e t c h a l l ()

r e s u l t s = sorted (l i s t (set (r e s u l t s)) , key=lambda x :
x [1])

i f r e s u l t s != [] :
return j s o n i f y (

r e s u l t s=r e s u l t s ,
)

else :
return abort (404 , ”Cannot Find Houses f o r

Postcode ”)

@bp . route (”/ f i n d/< s t r i n g : postcode>/<path : house>”)
def ge t house saon (postcode , house) :

try :
paon , saon = house . s p l i t (”/”)

except ValueError :
paon = house
saon = ””

sq l hous e que ry = ”””SELECT h . houseid , h . type , h .
paon , h . saon , h . postcode , p . s t r e e t , p . town

FROM pos tcodes AS p
INNER JOIN houses AS h ON p .

pos tcode = h . pos tcode AND p .
pos tcode = %s

WHERE h . paon = %s AND h . saon = %s ;
”””

s q l s a l e s q u e r y = ”””SELECT ∗
FROM sa l e s
WHERE house id = %s
ORDER BY date DESC; ”””

with current app . app context () :
cur = current app . sq l db . cu r so r ()
cur . execute (sq l house query , (postcode . upper () ,

paon . upper () , saon . upper () ,)) # Gets house
house : L i s t [Tuple] = cur . f e t chone ()
i f house != [] :

183

cur . execute (s q l s a l e s q u e r y , (house [0] ,)) #
ge t s a l l s a l e s f o r the house

s a l e s = cur . f e t c h a l l ()
h o u s e i n f o = {

”paon” : house [2] ,
” saon ” : house [3] ,
” postcode ” : house [4] ,
” s t r e e t ” : house [5] ,
”town” : house [6] ,
” type ” : house [1] ,
” s a l e s ” : s a l e s

}
h o u s e i n f o [” e p c c e r t ”] = e p c c e r t . GetEPC() .

run (postcode , paon , saon)
return j s o n i f y (h o u s e i n f o)

else :
return abort (404 , ”No House Found”)

@bp . route (”/ overview ”)
def overview () :

with current app . app context () :
data = current app . mongo db . cache . f i n d o ne ({ ”

i d ” : ”OVERVIEW”})
cur = current app . sq l db . cu r so r ()
cur . execute (”SELECT data FROM s e t t i n g s WHERE

name = ’ l a s t a g g r e g a t e d c o u n t i e s ’ ”)
l a s t u p d a t e = cur . f e t chone ()
i f data i s not None :

i f datet ime . fromtimestamp (f loat (l a s t u p d a t e
[0])) < data [” l a s t updated ”] :
return data

else :
data = country . ge t ove rv i ew (current app

)
data [” i d ”] = ”OVERVIEW”
data [” l a s t updated ”] = datet ime . now ()
current app . mongo db . cache . d e l e t e o n e ({

” i d ” : ”OVERVIEW”})

184

current app . mongo db . cache . i n s e r t o n e (
data)

else :
data = country . ge t ove rv i ew (current app)
data [” i d ”] = ”OVERVIEW”
data [” l a s t updated ”] = datet ime . now ()
current app . mongo db . cache . i n s e r t o n e (data)

return data

@bp . route (”/ value / c a l c/< s t r i n g : houseid>”)
def va lue house (house id : str) :

task = v a l u a t i o n t a s k . de lay (house id)
return j s o n i f y (

s t a t u s=”ok” ,
t a s k i d=”/ value / get /” + task . id ,

)

@bp . route (”/ value / get/< s t r i n g : j ob id>”)
def g e t v a l u e (j o b i d : str) :

i f j o b i d i s not None :
task = a n a l y s e t a s k . AsyncResult (j o b i d)
i f task . s t a t e == ”PENDING” :

return {
” s t a t u s ” : task . s t a t e

}
else :

v a lu a t i o n s = task . wait ()
return {

” v a l ua t i on s ” : va luat ions ,
” s t a t u s ” : ”ok”

}

def g e t l a s t u p d a t e d () :
cur = current app . sq l db . cu r so r ()
cur . execute (”SELECT ∗ FROM s e t t i n g s WHERE name = ’

l a s t updated ’ ; ”)
l a s t updated = cur . f e t chone ()
i f l a s t updated == None :

185

return datet ime . fromtimestamp (0)
else :

i f l a s t updated [1] i s not None :
return datet ime . fromtimestamp (f loat (

l a s t updated [1]))
else :

return datet ime . fromtimestamp (0)

5.4.5 epc cert.py

from typing import Tuple

import r e q u e s t s
from bs4 import Beaut i fu lSoup
from c o n f i g import Config
from pymongo import MongoClient

class GetEPC() :
def i n i t (s e l f) −> None :

c o n f i g = Config ()
s e l f . mongo db = MongoClient (f ”mongodb ://{

c o n f i g .MONGO USER} :{ c o n f i g .MONGOPASSWORD}@{
c o n f i g .MONGO HOST} :27017/? authSource=
house data ”)

s e l f . mongo = s e l f . mongo db . house data

def g e t h o u s e s (s e l f , postcode : str) −> str :
u r l p o s t c o d e = ”+” . j o i n (postcode . s p l i t (” ”))
re sp = r e q u e s t s . get (f ” https : // f ind−energy−

c e r t i f i c a t e . s e r v i c e . gov . uk/ f ind−a−
c e r t i f i c a t e / search−by−postcode ? postcode={
u r l p o s t c o d e }”)

house soup = Beaut i fu lSoup (resp . content . decode (
”UTF−8”) , ’ html . pa r s e r ’)

house tags = house soup . s e l e c t (”#main−content >
 d iv > d iv > t a b l e > tbody > t r ”)

186

houses = []
for house in house tags :

p r o p e r t i e s = house . f i n d (name=”th”) . f i n d (”a”
)

address = p r o p e r t i e s . contents [0] \
. r e p l a c e (”\n” , ””) \
. s t r i p () \
. s p l i t (” , ”) [0] \
. upper ()

c e r t = p r o p e r t i e s [” h r e f ”]
houses . append ((address , c e r t))

return houses

def g e t c e r t (s e l f , path : str) :
r e sp = r e q u e s t s . get (f ” https : // f ind−energy−

c e r t i f i c a t e . s e r v i c e . gov . uk{path}”)
c e r t s oup = Beaut i fu lSoup (resp . content . decode (”

UTF−8”) , ’ html . pa r s e r ’)
sqr m = ce r t s oup . s e l e c t o n e (”#main−content >

d iv > d iv . govuk−gr id−column−two−t h i r d s . epc−
domestic−s e c t i o n s > d iv . govuk−body . epc−blue−
bottom . pr in tab l e −area . epc−box−conta ine r > d l
 > d iv : nth−c h i l d (2) > dd”) \

. contents [0] \

. r e p l a c e (”\n” , ””) \

. r e p l a c e (” square metres ” , ””) \

. s t r i p ()
sqr m = int (sqr m)

e n e r g y r a t i n g = ce r t s oup . s e l e c t o n e (”#main−
content > d iv > d iv . govuk−gr id−column−two−
t h i r d s . epc−domestic−s e c t i o n s > d iv . govuk−
body . epc−blue−bottom . pr in tab l e −area . epc−
rat ing −graph−s e c t i o n > svg > svg . rat ing −
cur r ent > t ex t . current−po t en t i a l −number”) \

. contents [0] \

. r e p l a c e (” | ” , ””) \

. s t r i p ()

187

e n e r g y r a t i n g = int (e n e r g y r a t i n g)

return (sqr m , e n e r g y r a t i n g)

def run (s e l f , postcode : str , paon : str , saon : str) :
houses = s e l f . g e t h o u s e s (postcode)
i f saon != ”” :

house id = f ”{ saon} {paon}” . upper ()
else :

house id = paon . upper ()
try :

house = l i s t (f i l t e r (lambda x : x [0] ==
house id , houses)) [0]

except IndexError :
return {

”sqr m” : None ,
” e n e r g y r a t i n g ” : None ,
” c e r t i d ” : None

}
c e r t s t a t s = s e l f . g e t c e r t (house [1])
s e l f . i n s e r t d a t a (c e r t s t a t s , house [1] ,

postcode , paon , saon)
return {

”sqr m” : c e r t s t a t s [0] ,
” e n e r g y r a t i n g ” : c e r t s t a t s [1] ,
” c e r t i d ” : house [1]

}

def i n s e r t d a t a (s e l f , c e r t s t a t s : Tuple [int , int] ,
c e r t i d : str , postcode : str , paon : str , saon :
str) :

epc doc = s e l f . mongo . e p c c e r t s . f i n d o ne ({ ” i d ”
: f ”{paon}{ saon}{ postcode }”})

doc = {
” i d ” : f ”{paon}{ saon}{ postcode }” ,
” sqr m” : c e r t s t a t s [0] ,
” e n e r g y r a t i n g ” : c e r t s t a t s [1] ,
” c e r t i d ” : c e r t i d

188

}
i f epc doc i s None :

s e l f . mongo . e p c c e r t s . i n s e r t o n e (doc)
e l i f epc doc != doc :

s e l f . mongo . e p c c e r t s . update one (
{” i d ” : doc [” i d ”]} ,
{” $ s e t ” : {

”sqr m” : c e r t s t a t s [0] ,
” e n e r g y r a t i n g ” : c e r t s t a t s [1] ,
” c e r t i d ” : c e r t i d

}}
)

i f name == ” main ” :
c e r t = GetEPC()
c e r t . run (”CH2 1DE” , ”16” , ””)

5.4.6 search area funcs.py

import u r l l i b . parse

def g e n e r a t e s q l q u e r y (query : str , q u e r y f i l t e r : str =
None) :
i f q u e r y f i l t e r i s not None :

i f q u e r y f i l t e r in [” postcode ” , ” s t r e e t ” , ”town
” , ” d i s t r i c t ” , ” county ” , ” outcode ” , ” area ” ,
” s e c t o r ”] :

s q l q u e r y = f ”””SELECT area , a rea t ype
FROM areas WHERE sub s t r (area ,

1 , 50)
LIKE ’{ query}%’ AND area type =

’{ q u e r y f i l t e r } ’
ORDER BY cha r l en g t h (area)
LIMIT 10; ”””

else :

189

return ””
else :

s q l q u e r y = f ”””SELECT area , a rea t ype
FROM areas WHERE sub s t r (area , 1 , 50)
LIKE ’{ query}%’
ORDER BY cha r l en g t h (area)
LIMIT 10; ”””

return s q l q u e r y

def s o r t r e s u l t s (r e s u l t s) :
SORT ORDER = {” area ” : 0 , ” outcode ” : 1 , ” s e c t o r ” : 2 ,

” postcode ” : 3 , ”town” : 4 , ” county ” : 5 , ”
d i s t r i c t ” : 6 , ” s t r e e t ” : 7}

r e t u r n l i s t = []
for area in r e s u l t s :

i f area [1] not in [” postcode ” , ” outcode ” , ” s e c t o r
” , ” area ”] :

r e t u r n l i s t . append ((area [0] . t i t l e () , area
[1] . t i t l e ()))

else :
r e t u r n l i s t . append ((area [0] , area [1] . t i t l e

()))
r e t u r n l i s t . s o r t (key=lambda va l : SORT ORDER[va l [1] .

lower ()])
return r e t u r n l i s t

5.4.7 country.py

from f l a s k import current app

def get overv i ew (current app : current app) :
query = [

{
’ $match ’ : {

’ a r ea type ’ : ’AREA’
}

} , {

190

’ $p r o j e c t ’ : {
’ 3 month perc ’ : {

’ $avg ’ : {
’ $ s l i c e ’ : [

’ $ s t a t s . percentage change .
a l l . perc change ’ , −3, 3

]
}

}
}

} , {
’ $ s o r t ’ : {

’ 3 month perc ’ : −1
}

} , {
’ $ l i m i t ’ : 5

}
]
top 5 towns = current app . mongo db . cache . aggregate (

query)
query [2] [” $ s o r t ”] [”3 month perc ”] = 1
bottom 5 towns = current app . mongo db . cache .

aggregate (query)
country data = current app . mongo db . cache . f i nd on e

({ ” i d ” : ”ALLCOUNTRY”})
r e tu rn data = country data [” s t a t s ”]
r e tu rn data [” t imings ”] = country data [” t imings ”]
r e tu rn data [” t o p f i v e ”] = l i s t (top 5 towns)
r e tu rn data [” bot tom f ive ”] = l i s t (bottom 5 towns)
return r e tu rn data

5.4.8 Dockerfile

FROM python : 3 . 1 0 . 8 s

WORKDIR /app

191

COPY . / requi rements . txt . /

RUN python3 −m pip i n s t a l l −−upgrade pip s e t u p t o o l s
wheel

RUN python3 −m pip i n s t a l l −r requ i rements . txt

COPY . / web .

CMD [” gunicorn ” , ”−w 4” , ”−b 0 . 0 . 0 . 0 : 8 0 0 0 ” , ” run : app”]

5.4.9 requirements.txt

amqp==5.1.1
async−t imeout ==4.0.2
beaut i f u l s oup4 ==4.11.2
b i l l i a r d ==3.6.4.0
b l i n k e r ==1.5
c e l e r y ==5.2.7
c e r t i f i ==2022.12.7
charset−normal i z e r ==3.0.1
c l i c k ==8.1.3
c l i c k −didyoumean==0.3.0
c l i c k −p lug in s ==1.1.1
c l i c k −r e p l ==0.2.0
dnspython ==2.3.0
Flask ==2.2.2
Flask−Cors ==3.0.10
gunicorn ==20.1.0
idna==3.4
import l ib −metadata ==6.0.0
i t sdange rous ==2.1.2
J in j a2 ==3.1.2
kombu==5.2.4
lxml ==4.9.2
MarkupSafe ==2.1.2
p o l a r s ==0.16.1
prompt−t o o l k i t ==3.0.36

192

psycopg2 ==2.9.5
pymongo==4.3.3
python−d a t e u t i l ==2.8.2
python−dotenv ==0.21.1
pytz ==2022.7.1
r e d i s ==4.4.2
r e q u e s t s ==2.28.2
sentry−sdk ==1.14.0
s i x ==1.16.0
soups i eve ==2.3.2. post1
t y p i n g e x t e n s i o n s ==4.4.0
u r l l i b 3 ==1.26.14
v ine ==5.0.0
wcwidth ==0.2.6
Werkzeug==2.2.2
z ipp ==3.12.0

5.5 Website

5.5.1 app.html

< !DOCTYPE html>
<html lang=”en”>

<head>
<meta charset=” utf −8” />
<l ink rel=” icon ” href=”%s v e l t e k i t .

a s s e t s%/fav i con . png” />
<meta name=” viewport ” content=”width=

device−width , i n i t i a l −s c a l e =1,
maximum−s c a l e=1”>

<meta name=” d e s c r i p t i o n ” content=”View ,
 ana lyse and compare property data
from a l l over England and Wales”>

%s v e l t e k i t . head%
</head>

193

<body data−s v e l t e k i t −preload−data=” hover ”>
<div style=” d i s p l a y : contents ”>%

s v e l t e k i t . body%</div>
</body>

</html>

5.5.2 app.css

@tai lwind base ;
@tai lwind components ;
@tai lwind u t i l i t i e s ;

5.5.3 +routes.svelte

<script lang=’ ts ’>
import QuickStat from ” $ l i b /components/

QuickStat . s v e l t e ” ;
import Badge from ” $ l i b /components/Badge . s v e l t e

” ;
import PieChart from ” $ l i b /components/ PieChart .

s v e l t e ” ;
import LineGraph from ” $ l i b /components/

LineGraph . s v e l t e ” ;
import BarChart from ” $ l i b /components/BarChart .

s v e l t e ” ;

export l e t data ;
con so l e . l og (data) ;

l e t q u i c k s t a t s = data . q u i c k s t a t s ;
l e t current month = new Date (data . a v e r a g e p r i c e

. dates . s l i c e (−1) [0]) ;
l e t l a s t updated = new Date (data . l a s t updated) ;
l e t t imings = data . t imings ;

f unc t i on toTi t l eCase (s t r : s t r i n g) {

194

r e turn s t r . toLowerCase () . s p l i t (’ ’) . map(
func t i on (word) {

r e turn (word . charAt (0) . toUpperCase () + word
. s l i c e (1)) ;

}) . j o i n (’ ’) ;
}

l e t perc change = {
type : [”D” , ”F” , ”S” , ”T” , ” a l l ”] ,
perc : [data . percentage change . S . perc change ,

data . percentage change .F . perc change , data .
percentage change .T. perc change , data .
percentage change .D. perc change , data .
percentage change . a l l . perc change] ,

date : data . percentage change . a l l . date
} ;

</ script>
<s v e l t e :head>

<t i t l e>House Stat s | Home</ t i t l e>
</ s v e l t e :head>

<div class=”h−5/6”>
<div class=”m−2”>

<div class=” items−c en te r a l i gn −middle f l e x f l e x
− i n i t i a l f l e x −wrap”>
<p class=” i n l i n e −block text −2x l m−2 a l i gn −

middle ”>England & Wales , { current month .
t oLoca l eS t r i ng (’ de fau l t ’ , { month : ’ long
’ })} { current month . getFul lYear () }</p>

<Badge
text=” Last Updated { l a s t updated .

toLoca l eDateStr ing () }”
co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
<Badge

text=” Execution Time {Number ((t imings .
aggregate) . toFixed (3))} s ”

195

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
<Badge

text=” Current Month { current month .
toLoca l eDateStr ing () }”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
</div>

</div>
<div class=” gr id l g : gr id−co l s −4 md: gr id−co l s −2 gr id

−co l s −1 gap−4 h− f u l l m−2”>
<QuickStat

value={q u i c k s t a t s . a v e r a g e p r i c e }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . average change }
t i t l e=”Average House Pr i c e ”
co l ou r=” red ”

/>
<QuickStat

value={q u i c k s t a t s . s a l e s q t y }
currency={ f a l s e }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . s a l e s q t y c h a n g e }
t i t l e=” Sa l e s Volume”
co l ou r=” purple ”

/>
<QuickStat

value={q u i c k s t a t s . s a l e s vo lume }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . sa l e s vo lume change

}
t i t l e=” Pr i ce Volume”
co l ou r=” green ”

/>
<QuickStat

value={q u i c k s t a t s . e x p e n s i v e s a l e }

196

us ing pe r c en tage={ f a l s e }
t i t l e=”Most Expensive House”
co l ou r=” pink ”

/>
<div class=”row−span−2 md: co l−span−2 bg

−white p−4 rounded”>
<p class=” text−l g ml−2”>Top 5 Areas</p>
<div class=” r e l a t i v e over f low−x−auto ”>

<table class=”w− f u l l text−sm text− l e f t
text−gray −500 dark : text−gray −400”>
<thead class=” text−xs text−gray −700

 uppercase bg−gray −50 dark : bg−
gray −700 dark : text−gray −400”>
<tr>

<th scope=” c o l ” class=”px−6
 py−3”>

Postcode Areas
</th>
<th scope=” c o l ” class=”px−6

 py−3”>
3m Moving Average

Percentage
</th>

</ tr>
</thead>
<tbody>

{#each data . t o p f i v e as town}
<tr class=”bg−white border−

b dark : bg−gray −800 dark :
border−gray −700”>
<th scope=”row” class=”

px−6 py−4 font−
medium text−gray −900
 whitespace−nowrap
dark : text−white ”>
<a href={”/ ana lyse /

area /” + town .
i d . s p l i t (”AREA”

197

) [0] }>{town . i d .
s p l i t (”AREA”)
[0] . toUpperCase
() }

</th>
<td class=”px−6 py−4”>

{Number ((town [”3
month perc ”]) .

toFixed (3))}%
</td>

</ tr>
{/ each}

</tbody>
</ table>

</div>
</div>
<div class=”row−span−2 md: co l−span−2 bg

−white p−4 rounded”>
<p class=” text−l g ml−2”>Bottom 5 Areas</p>
<div class=” r e l a t i v e over f low−x−auto ”>

<table class=”w− f u l l text−sm text− l e f t
text−gray −500 dark : text−gray −400”>
<thead class=” text−xs text−gray −700

 uppercase bg−gray −50 dark : bg−
gray −700 dark : text−gray −400”>
<tr>

<th scope=” c o l ” class=”px−6
 py−3”>

Postcode Areas
</th>
<th scope=” c o l ” class=”px−6

 py−3”>
3m Moving Average

Percentage
</th>

</ tr>
</thead>
<tbody>

198

{#each data . bot tom f ive as town
}
<tr class=”bg−white border−

b dark : bg−gray −800 dark :
border−gray −700”>
<th scope=”row” class=”

px−6 py−4 font−
medium text−gray −900
 whitespace−nowrap
dark : text−white ”>
<a href={”/ ana lyse /

area /” + town .
i d . s p l i t (”AREA”

) [0] }>{town . i d .
s p l i t (”AREA”)
[0] . toUpperCase
() }

</th>
<td class=”px−6 py−4”>

{Number ((town [”3
month perc ”]) .

toFixed (3))}%
</td>

</ tr>
{/ each}

</tbody>
</ table>

</div>
</div>

<div class=” x l : row−span−2”>
<PieChart t i t l e=” Property Types” l a b e l s={

data . t ype p ropo r t i on s . type} data={data .
t ype p ropo r t i on s . count }/>

</div>
<div class=”md: co l−span−2 row−span−2”>

<LineGraph t i t l e=”Monthly Average Pr i c e ”
l a b e l s={data . a v e r a g e p r i c e . type} data={
data . a v e r a g e p r i c e . p r i c e s } dates={data .

199

a v e r a g e p r i c e . dates }/>
</div>
<div class=” md: co l−span−2 row−span−2”>

<BarChart t i t l e=” Percentage Change” l a b e l s
={perc change . type} data={perc change .
perc } dates={perc change . date }/>

</div>
<div class=” md: co l−span−2 row−span−2”>

<BarChart t i t l e=” Sa l e s Volume” l a b e l s={data
. monthly qty . type} data={data .
monthly qty . qty} dates={data . monthly qty
. dates }/>

</div>
<div class=”md: co l−span−2 row−span−2”>

<BarChart t i t l e=” Pr i ce Volume” l a b e l s={data
. monthly volume . type} data={data .
monthly volume . volume} dates={data .
monthly volume . dates }/>

</div>
</div>

</div>

5.5.4 +layout.svelte

<script>
import Menu from ” $ l i b /components/menu . s v e l t e ” ;
import Loader from ” $ l i b /components/Loader .

s v e l t e ” ;
import { nav iga t ing } from ’ $app/ s to r e s ’ ;
import ” . . / app . c s s ” ;
import ” f l o w b i t e / d i s t / f l o w b i t e . c s s ” ;
import ∗ as Sentry from ” @sentry / s v e l t e ” ;
import { BrowserTracing } from ” @sentry / t r a c i n g

” ;
import { dev } from ’ $app/environment ’ ;

l e t c u r r e n t y e a r = new Date () . getFul lYear () ;

200

</ script>

<style lang=” p o s t c s s ”>
: g l o b a l (html) {

background−c o l o r : theme (c o l o r s . s l a t e
. 2 0 0) ;

}
</ style>

<div class=” f l e x f l e x −c o l min−h−s c r e en j u s t i f y −between”
>

<div class=” i n l i n e ”>
<Menu></Menu>

</div>
{# i f $nav igat ing }

<div class=” f l e x j u s t i f y −c en te r items−
c en te r my−52”>

<Loader></Loader>
</div>

{ : e l s e }
<s l o t />

{/ i f }

< f o o t e r class=”bg−green −800 text−sm text−white
text−c en te r i n s e t −x−0 bottom−0 p−2”>

© ; { c u r r e n t y e a r } <a href=” https : // github
. com/emtee14”>Morgan Thomas | <a href=
” mai l to : contact@housestats . co . uk”>
contact@housestats . co . uk | <a href=”/
tos ”>Terms o f Use |
Privacy Po l i cy

Contains HM Land Reg i s t ry data Crown
copyr ight and database r i g h t 2021 . This
data i s l i c e n s e d under the Open Government

Licence v3 . 0 .
</ f o o t e r>

201

</div>

5.5.5 +page.ts

import { e r r o r } from ’ @ s v e l t e j s / k i t ’ ;
import type { PageLoad } from ’ . / $types ’ ;

export const load = (async ({ params , f e t c h }) => {
const re sponse = await f e t c h (’ https : // api .

house s ta t s . co . uk/ api /v1/ overview ’) ;
const data = await re sponse . j son () ;
i f (r e sponse . s t a t u s == 200) {

r e turn data
} e l s e {

throw e r r o r (400 , ’ Unable to load main
dashboard new data i s being added ’) ;

}
}) s a t i s f i e s PageLoad ;

5.5.6 +error.svelte

<script>
import { page } from ’ $app/ s to r e s ’ ;

</ script>

<div class=” f l e x h−s c r e en j u s t i f y −c en te r items−c en te r ”>
<div class=” text−c en te r ”>

<p class=” text −2x l ”>{$page . e r r o r . message}</p>
<p class=” text−l g ”>This s i t e i s s t i l l under

development so some f e a t u r e s may be miss ing<
/p>

</div>

</div>

202

5.5.7 analyse/+page.svelte

<script lang=” t s ”>
/∗∗ @type { import (’ . / $types ’) . PageData} ∗/
import Badge from ’ $ l i b /components/Badge . s v e l t e ’ ;
import QuickStat from ’ $ l i b /components/ QuickStat .

s v e l t e ’ ;
import PieChart from ’ $ l i b /components/ PieChart .

s v e l t e ’ ;
import LineGraph from ’ $ l i b /components/LineGraph .

s v e l t e ’ ;
import BarChart from ’ $ l i b /components/BarChart .

s v e l t e ’ ;

l e t q u i c k s t a t s , s t a t s , r e s u l t s , t imings ,
perc change ;

l e t l a s t updated : Date ;
l e t current month : Date ;
l e t area : s t r i n g ;

export l e t data ;
i f (data . s t a t u s == ”SUCCESS”) {

q u i c k s t a t s = data . r e s u l t . s t a t s . q u i c k s t a t s ;
s t a t s = data . r e s u l t . s t a t s ;
r e s u l t s = data . r e s u l t ;
t imings = r e s u l t s . t imings ;
l a s t updated = new Date (r e s u l t s . l a s t updated) ;
current month = new Date (q u i c k s t a t s .

current month) ;

perc change = {
type : [”S” , ”F” , ”T” , ”D” , ” a l l ”] ,
perc : [s t a t s . percentage change . S .

perc change , s t a t s . percentage change .F .
perc change , s t a t s . percentage change .T.
perc change , s t a t s . percentage change .D.
perc change , s t a t s . percentage change . a l l .

203

perc change] ,
date : s t a t s . percentage change . a l l . date

} ;

l e t postcodes = [”POSTCODE” , ”AREA” , ”SECTOR” , ”
OUTCODE”]

i f (! postcodes . i n c l u d e s (r e s u l t s . a r ea type)){
area = toTi t l eCase (r e s u l t s . area) ;

} e l s e {
area = r e s u l t s . area ;

}
}

l e t t i t l e = ” Analyse ” ;

f unc t i on toTi t l eCase (s t r : s t r i n g) {
r e turn s t r . toLowerCase () . s p l i t (’ ’) . map(

func t i on (word) {
r e turn (word . charAt (0) . toUpperCase () + word

. s l i c e (1)) ;
}) . j o i n (’ ’) ;

}
</ script>

<s v e l t e :head>
<t i t l e>House Stat s | { t i t l e }</ t i t l e>

</ s v e l t e :head>

<div class=”h−5/6”>
<div class=”m−2”>

<div class=” items−c en te r a l i gn −middle f l e x f l e x
− i n i t i a l f l e x −wrap”>
<p class=” i n l i n e −block text −2x l m−2 a l i gn −

middle ”>{ area } ({ toTi t l eCase (r e s u l t s .
a r ea type) }) { current month .
t oLoca l eS t r i ng (’ de fau l t ’ , { month : ’ long

204

’ })} { current month . getFul lYear () }</p>
<Badge

text=” Last Updated { l a s t updated .
toLoca l eDateStr ing () }”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
<Badge

text=” Execution Time {Number ((t imings .
aggregate) . toFixed (3))} s ”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
<Badge

text=”Data Fetch Time {Number ((t imings .
l oade r) . toFixed (3))} s ”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
<Badge

text=” Current Month { current month .
toLoca l eDateStr ing () }”

co l ou r=” green ”
c l a s s e s=” i n l i n e −block a l i gn −middle ”

/>
</div>

</div>
<div class=” gr id l g : gr id−co l s −4 md: gr id−co l s −2 gr id

−co l s −1 gap−4 h− f u l l m−2”>
<QuickStat

value={q u i c k s t a t s . a v e r a g e p r i c e }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . average change }
t i t l e=”Average House Pr i c e ”
co l ou r=” red ”

/>
<QuickStat

value={q u i c k s t a t s . s a l e s q t y }

205

currency={ f a l s e }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . s a l e s q t y c h a n g e }
t i t l e=” Sa l e s Volume”
co l ou r=” purple ”

/>
<QuickStat

value={q u i c k s t a t s . s a l e s vo lume }
us ing pe r c en tage={t rue }
percentage={q u i c k s t a t s . sa l e s vo lume change

}
t i t l e=” Sa l e s Pr i ce Volume”
co l ou r=” green ”

/>
<QuickStat

value={q u i c k s t a t s . e x p e n s i v e s a l e }
us ing pe r c en tage={ f a l s e }
t i t l e=”Most Expensive House”
co l ou r=” pink ”

/>
<div class=” x l : row−span−2”>

<PieChart t i t l e=” Property Types” l a b e l s={
s t a t s . t ype p ropo r t i on s . type} data={ s t a t s
. t ype p ropo r t i on s . count }/>

</div>
<div class=”md: co l−span−2 row−span−2”>

<LineGraph t i t l e=”Monthly Average Pr i c e ”
l a b e l s={ s t a t s . a v e r a g e p r i c e . type} data={
s t a t s . a v e r a g e p r i c e . p r i c e s } dates={ s t a t s
. a v e r a g e p r i c e . dates }/>

</div>
<div class=” md: co l−span−2 row−span−2”>

<BarChart t i t l e=” Percentage Change” l a b e l s
={perc change . type} data={perc change .
perc } dates={perc change . date }/>

</div>
<div class=” md: co l−span−2 row−span−2”>

206

<BarChart t i t l e=” Sa l e s Volume” l a b e l s={
s t a t s . monthly qty . type} data={ s t a t s .
monthly qty . qty} dates={ s t a t s .
monthly qty . dates }/>

</div>
<div class=”md: co l−span−2 row−span−2”>

<BarChart t i t l e=” Pr i ce Volume” l a b e l s={
s t a t s . monthly volume . type} data={ s t a t s .
monthly volume . volume} dates={ s t a t s .
monthly volume . dates }/>

</div>
</div>

</div>

5.5.8 +page.svelte

import { e r r o r } from ’ @ s v e l t e j s / k i t ’ ;

/∗∗ @type { import (’ . / $types ’) . PageLoad} ∗/
export async func t i on load ({ f e tch , params }) {

const s l e e p = (ms : number) => new Promise ((r)
=> setTimeout (r , ms)) ;

l e t area : s t r i n g = params . area ;
l e t a rea type : s t r i n g = params . a rea type ;

l e t s t a t s ;
l e t counter = 0
const re sponse = await f e t c h (’ https : // api .

house s ta t s . co . uk/ api /v1/ ana lyse / ’ +
area type + ’/ ’ + area) ;

const data = await re sponse . j son () ;
i f (data . s t a t u s == ”ok”) {

whi le (t rue) {
const r e s r e s p = await f e t c h (

data . r e s u l t) ;
s t a t s = await r e s r e s p . j son () ;

207

i f (s t a t s . s t a t u s == ”SUCCESS” | | s t a t s .
s t a t u s == ”COMPLETED”) {

break
} e l s e i f (counter > 60∗4) {

throw e r r o r (500 , ’
Connection Timed Out
’)

}
counter++;
await s l e e p (250)

}
} e l s e {

throw e r r o r (500 , ’An Error Has Occured
’) ;

}
r e turn s t a t s

}

5.5.9 compoents/Badge.svelte

<script lang=” t s ”>
export l e t t ex t : s t r i n g ;
export l e t co l ou r : s t r i n g ;
export l e t s i z e : s t r i n g = ” xs ” ;
export l e t c l a s s e s : s t r i n g ;

</ script>

<span class=”bg−{co l ou r }−100 text −{co l ou r }−800 text −{
s i z e } font−medium m−1 px−2.5 py−0.5 rounded { c l a s s e s
}”>{ t ex t }

5.5.10 BarChart.svelte

<script lang=” t s ”>
import Chart from ’ chart . j s /auto ’ ;
import zoomPlugin from ’ cha r t j s −plugin−zoom ’ ;

208

import { onMount } from ’ s v e l t e ’ ;
import ’ cha r t j s −adapter−date−fns ’ ;
import {enGB} from ’ date−f n s / l o c a l e ’ ;

Chart . r e g i s t e r (zoomPlugin) ;
l e t graph id = Math . random () . t o S t r i ng (36) . subs t r (2 ,

5)

l e t house types : { [key : s t r i n g] : s t r i n g } = {
’D’ : ” Detatched ” ,
’S ’ : ”Semi−Detatched ” ,
’T ’ : ” Terrace ” ,
’F ’ : ” Flat ” ,
’O’ : ’ Other ’ ,
” a l l ” : ” Al l ”

} ;
l e t c o l o u r s = [

’#dc2626 ’ ,
’#9333ea ’ ,
’#16a34a ’ ,
’#db2777 ’

]

export l e t l a b e l s : Array<string> ;
export l e t t i t l e : s t r i n g ;
export l e t data : Array<Array<BigInt>>;
export l e t dates : Array<string> ;

l e t data l ength = data . l ength ;
l e t da ta s e t s = [] ;
f o r (l e t i = 0 ; i < data l ength ; i++){

data s e t s . push ({
label : house types [l a b e l s [i]] ,
data : data [i] ,
t en s i on : 0 . 1 ,
backgroundColor : c o l o u r s [i] ,
f i l l : f a l s e ,

}) ;

209

}
const char t data = {

l a b e l s : dates .map((x) => { r e turn new Date (x) }) ,
da ta s e t s : da ta s e t s

} ;
const c o n f i g = {

r e spon s i v e : true ,
type : ’ bar ’ ,
data : chart data ,
opt ions : {

s c a l e s : {
x : {

s tacked : true ,
type : ’ time ’ ,
time : {

round : ’month ’ ,
minUnit : ’month ’

} ,
adapters : {

date : {
l o c a l e : enGB

}
}

} ,
y : {

s tacked : t rue
}

} ,
p lug in s : {

zoom : {
pan : {

enabled : t rue
} ,
zoom : {
wheel : {

enabled : true ,
} ,
pinch : {

210

enabled : t rue
} ,
mode : ’ xy ’ ,
}

} ,
t i t l e : {

d i s p l a y : true ,
t ex t : t i t l e

}
}

}
} ;
l e t l i n e c h a r t : Chart ;
onMount (()=> {

l e t ctx = document . getElementById (graph id) ;
i f (ctx != n u l l){

l i n e c h a r t = new Chart (ctx , c o n f i g) ;
}

})
</ script>

<canvas id={graph id }>
</ canvas>
<button on : c l i c k ={ l i n e c h a r t . resetZoom (’ de fau l t ’) } type

=” button ” class=” text−white bg−green −700 hover : bg−
green −800 f o cu s : ou t l i n e −none f o cu s : r ing −4 f o cu s : r ing
−green −300 font−medium rounded− f u l l text−sm px−5 py
−2.5 text−c en te r mr−2 mb−2 dark : bg−green −600 dark :
hover : bg−green −700 dark : f o cus : r ing−green −800”>Reset
Zoom</button>

5.5.11 LineGraph.svelte

<script lang=” t s ”>
import Chart from ’ chart . j s /auto ’ ;
import zoomPlugin from ’ cha r t j s −plugin−zoom ’ ;
import { onMount } from ’ s v e l t e ’ ;

211

import ’ cha r t j s −adapter−date−fns ’ ;
import {enGB} from ’ date−f n s / l o c a l e ’ ;

Chart . r e g i s t e r (zoomPlugin) ;
l e t graph id = Math . random () . t o S t r i ng (36) . subs t r (2 ,

5)

l e t house types : { [key : s t r i n g] : s t r i n g } = {
’D’ : ” Detatched ” ,
’S ’ : ”Semi−Detatched ” ,
’T ’ : ” Terrace ” ,
’F ’ : ” Flat ” ,
’O’ : ’ Other ’ ,
” a l l ” : ” Al l ”

} ;
l e t c o l o u r s = [

’#dc2626 ’ ,
’#9333ea ’ ,
’#16a34a ’ ,
’#db2777 ’

]

export l e t l a b e l s : Array<string> ;
export l e t t i t l e : s t r i n g ;
export l e t data : Array<Array<BigInt>>;
export l e t dates : Array<string> ;

l e t data l ength = data . l ength ;
l e t da ta s e t s = [] ;
f o r (l e t i = 0 ; i < data l ength ; i++){

l e t label : string ;
i f (l a b e l s [i] . l ength < 4){

label = house types [l a b e l s [i]] ;
} e l s e {

label = (new Date (l a b e l s [i])) .
toLoca l eDateStr ing () ;

}
data s e t s . push ({

212

label : label ,
data : data [i] ,
t en s i on : 0 . 1 ,
borderColor : c o l o u r s [i] ,
f i l l : f a l s e ,

}) ;
}
const char t data = {

l a b e l s : dates .map((x) => { r e turn new Date (x) }) ,
da ta s e t s : da ta s e t s

} ;
const c o n f i g = {

r e spon s i v e : true ,
type : ’ l i n e ’ ,
data : chart data ,
opt ions : {

s c a l e s : {
x : {

type : ’ time ’ ,
time : {

round : ’month ’ ,
minUnit : ’month ’

} ,
adapters : {

date : {
l o c a l e : enGB

}
}

}
} ,
p lug in s : {

zoom : {
pan : {

enabled : t rue
} ,
zoom : {
wheel : {

enabled : true ,

213

} ,
pinch : {

enabled : t rue
} ,
mode : ’ xy ’ ,
}

} ,
t i t l e : {

d i s p l a y : true ,
t ex t : t i t l e

}
} ,
e lements : {

point :{
rad iu s : 0

}
}

}
} ;
l e t l i n e c h a r t : Chart ;
onMount (()=> {

l e t ctx = document . getElementById (graph id) ;
i f (ctx != n u l l){

l i n e c h a r t = new Chart (ctx , c o n f i g) ;
}

})
</ script>

<canvas id={graph id }>
</ canvas>
<button on : c l i c k ={ l i n e c h a r t . resetZoom (’ de fau l t ’) } type

=” button ” class=” text−white bg−green −700 hover : bg−
green −800 f o cu s : ou t l i n e −none f o cu s : r ing −4 f o cu s : r ing
−green −300 font−medium rounded− f u l l text−sm px−5 py
−2.5 text−c en te r mr−2 mb−2 dark : bg−green −600 dark :
hover : bg−green −700 dark : f o cus : r ing−green −800”>Reset
Zoom</button>

214

5.5.12 Loader.svelte

<style>
. l oade r {

border : 16px s o l i d #f 3 f 3 f 3 ;
border−rad iu s : 50%;
border−top : 16px s o l i d #046C4E ;
width : 120px ;
he ight : 120px ;
−webkit−animation : sp in 2 s l i n e a r

i n f i n i t e ; /∗ S a f a r i ∗/
animation : sp in 2 s l i n e a r i n f i n i t e ;

}
@−webkit−keyframes sp in {

0% { −webkit−trans form : r o t a t e (0 deg) ; }
100% { −webkit−trans form : r o t a t e (360 deg

) ; }
}
@keyframes sp in {

0% { trans form : r o t a t e (0 deg) ; }
100% { trans form : r o t a t e (360 deg) ; }

}
</ style>

<div class=” loade r ”></div>

5.5.13 menu.svelte

<script lang=” t s ”>
import { page } from ’ $app/ s to r e s ’ ;
import { Navbar , NavBrand , NavLi , NavUl ,

NavHamburger , Button , Input } from ’ f l owb i t e −
s v e l t e ’

$: cu r r ent page = $page . u r l . pathname ;
l e t s u g g e s t i o n s : Array<Array<[string , string]>> =

[] ;

215

l e t i sFocused = f a l s e ;
const onSearchFocus =()=> i sFocused=true ;
const onSearchBlur = () => setTimeout (() => {

i sFocused=f a l s e ; } , 250) ;

l e t r e s u l t s : boolean = f a l s e ;

async func t i on autoComplete (s e a r c h v a l u e : s t r i n g){
i f (s e a r c h v a l u e) {

const re sponse = await f e t c h (’ https : // api .
house s ta t s . co . uk/ api /v1/ search / ’ +
s e a r c h v a l u e) ;

const data = await re sponse . j son () ;
i f (data . found == true){

s u g g e s t i o n s = data . r e s u l t s ;
r e s u l t s = true ;

} e l s e {
r e s u l t s = f a l s e ;

}
} e l s e {

r e s u l t s = f a l s e ;
}

}
</ script>

<Navbar l e t : t o g g l e l e t : hidden>
<NavBrand href=”/”>

<img src=”/ logo . svg ” class=”h−15 mr−3 sm : h−9”
alt=”House S ta t s Logo” />

<span class=” s e l f −c en te r whitespace−nowrap text
−x l font−semibold dark : text−white ”>

House Stat s

</NavBrand>
<div class=” f l e x md: order −2”>

<Button color=”none” data−c o l l a p s e −t o g g l e=”
mobile−menu−3” ar ia −c o n t r o l s=” mobile−menu−3”

216

ar ia −expanded=” f a l s e ” class=”md: hidden text
−gray −500 dark : text−gray −400 hover : bg−gray
−100 dark : hover : bg−gray −700 f o cus : ou t l i n e −
none f o cu s : r ing −4 f o cu s : r ing−gray −200 dark :
f o cus : r ing−gray −700 rounded−l g text−sm p−2.5
 mr−1” >
<svg xmlns=” http ://www. w3 . org /2000/ svg ”

f i l l =”none” viewBox=”0 0 24 24” stroke−
width=” 1 .5 ” s t r oke=” currentCo lo r ” class=
”w−6 h−6 dark : text−white ”><path stroke−
l i n e c a p=”round” stroke− l i n e j o i n=”round”
d=”M21 21 l −5.197 −5.197m0 0A7. 5 7 . 5 0
105 .196 5 .196 a7 . 5 7 . 5 0 0010.607 10 .607 z
” /></ svg>

</Button>
<div class=” hidden r e l a t i v e md: b lock ”>

<div class=” f l e x abso lu t e i n s e t −y−0 l e f t −0
items−c en te r pl −3 po inter −events−none”>
<svg xmlns=” http ://www. w3 . org /2000/ svg ”

f i l l =”none” viewBox=”0 0 24 24”
stroke−width=” 1 .5 ” s t r oke=”
currentCo lo r ” class=”w−6 h−6 dark :
text−white ”><path stroke−l i n e c a p=”
round” stroke− l i n e j o i n=”round” d=”
M21 21 l −5.197 −5.197m0 0A7. 5 7 . 5 0
105 .196 5 .196 a7 . 5 7 . 5 0 0010.607
10 .607 z” /></ svg>

</div>
<input

type=” text ”
id=” search−navbar”
autocomplete=” o f f ”
class=” block w− f u l l p−2 pl −10 text−sm

text−gray −900 border border−gray −300
 rounded−l g bg−gray −50 f o cus : r ing−
blue −500 f o cus : border−blue −500 dark :
bg−gray −700 dark : border−gray −600
dark : p laceho lde r −gray −400 dark : text−

217

white dark : f o cus : r ing−blue −500 dark :
f o cus : border−blue −500”

p l a c eho l d e r=” Search Areas . . . ”
on : input={e => autoComplete (e . t a r g e t .

va lue)}
on : f o cus={onSearchFocus}
on : b lur={onSearchBlur}>

<div class=” abso lu t e ”>
{# i f i sFocused == true }

<div class=” r e l a t i v e bg−white w−96”
>
{# i f r e s u l t s == true }

{#each s u g g e s t i o n s as
sugge s t i on }
<a href=”/ ana lyse /{

sugge s t i on [1]}/{
sugge s t i on [0] } ”
class=” pl −2 hover : bg
−gray −300 b lock ”>
{ sugge s t i on [0] }
<span class=”bg−

blue −100 text−
blue −800 text−xs
 font−medium mr
−2 px−2.5 py−0.5
 rounded”>{
sugge s t i on [1] }</
span>

{/ each}

{ : e l s e }
<p class=”ml−2”>No Resu l t s<

/p>
{/ i f }

</div>
{/ i f }

</div>
</div>

218

<NavHamburger on : c l i c k ={t o g g l e } />
</div>
<NavUl {hidden}>

<NavLi href=”/” a c t i v e={cur rent page === ”/” ?
true : f a l s e }>Dashboard</NavLi>

<NavLi href=”/ count i e s ” a c t i v e={cur rent page
=== ”/ count i e s ” ? t rue : f a l s e }>Overview
Counties</NavLi>

<NavLi href=”/ va lua t i on ” a c t i v e={cur rent page
=== ”/ va lua t i on ” ? t rue : f a l s e }>House
Lookup</NavLi>

<NavLi href=”/ r e p o r t s ” a c t i v e={cur rent page ===
”/ r e p o r t s ” ? t rue : f a l s e }>Report

Generator</NavLi>
</NavUl>

</Navbar>

5.5.14 PieChart.svelte

<script lang=” t s ”>
import Chart from ’ chart . j s /auto ’ ;
import { onMount } from ’ s v e l t e ’ ;

l e t house types : { [key : s t r i n g] : s t r i n g } = {
’D’ : ” Detatched ” ,
’F ’ : ” Flat ” ,
’S ’ : ”Semi−Detatched ” ,
’T ’ : ” Terrace ” ,
’O’ : ’ Other ’

} ;

export l e t l a b e l s : Array<string> ;
export l e t t i t l e : s t r i n g ;
export l e t data : Array<Big Intege r> ;

const char t data = {

219

l a b e l s : l a b e l s . map((x) => { r e turn house types [x
] }) ,

da ta s e t s : [{
l a b e l : t i t l e ,
data : data ,
backgroundColor : [
’#db2777 ’ ,
’#dc2626 ’ ,
’#16a34a ’ ,
’#9333ea ’ ,

] ,
hove rOf f s e t : 4

}] ,
} ;
const c o n f i g = {

type : ’ pie ’ ,
data : chart data ,
opt ions : {

p lug in s : {
t i t l e : {

d i s p l a y : true ,
t ex t : t i t l e

}
}

}
} ;
onMount (()=> {

l e t ctx = document . getElementById (’ p i echart ’) ;
new Chart (ctx , c o n f i g) ;

})
</ script>

<canvas id=” p i e c ha r t ”>

</ canvas>

220

5.5.15 QuickStat.svelte

<script lang=” t s ”>
l e t fo rmatte r = I n t l . NumberFormat (’ en ’ ,

{
notat ion : ’ compact ’ ,
un i tDi sp lay : ’ long ’ ,
s t y l e : ’ currency ’ ,
currency : ’GBP’

}) ;
export l e t va lue : GLfloat ;
export l e t u s ing pe r c en tage : boolean = f a l s e ;
export l e t percentage : GLfloat = 0 ;
export l e t t i t l e : s t r i n g ;
export l e t currency : boolean = true ;
export l e t co l ou r : s t r i n g ;

</ script>

<div class=”bg−{co l ou r }−600 text−white rounded p−2 ”>
{# i f currency }

<p class=” text −2x l font−e x t r a l i g h t i n l i n e ”>{
f o rmatte r . format (va lue)}</p>

{ : e l s e }
<p class=” text −2x l font−e x t r a l i g h t i n l i n e ”>{

value . t oLoca l eS t r i ng () }</p>
{/ i f }
{# i f u s ing pe r c en tage }
<p class=” i n l i n e font−th in a l i gn −top ”>{percentage <

0 ? ’> ’ : ’< ’} {Math . abs (percentage)}%</p>
{/ i f }
<p class=” text−sm font−e x t r a l i g h t ”>{ t i t l e }</p>

</div>

5.5.16 SearchBar.svelte

<script lang=’ ts ’>
export l e t f i l t e r : s t r i n g ;

221

l e t s u g g e s t i o n s : Array<Array<[string , string]>> =
[] ;

l e t i sFocused = f a l s e ;
const onFocus =()=>i sFocused=true ;
const onBlur = () => setTimeout (() => { i sFocused=

f a l s e ; } , 250) ;

l e t r e s u l t s : boolean = f a l s e ;

async func t i on autoComplete (s e a r c h v a l u e : s t r i n g){
i f (s e a r c h v a l u e) {

const re sponse = await f e t c h (’ https : // api .
house s ta t s . co . uk/ api /v1/ search / ’ +
s e a r c h v a l u e + ’? f i l t e r =’ + f i l t e r) ;

const data = await re sponse . j son () ;
i f (data . found == true){

s u g g e s t i o n s = data . r e s u l t s ;
r e s u l t s = true ;

} e l s e {
r e s u l t s = f a l s e ;

}
} e l s e {

r e s u l t s = f a l s e ;
}

}
f unc t i on t i t l e C a s e (s t r : s t r i n g) {

r e turn s t r . toLowerCase () . s p l i t (’ ’) . map(
func t i on (word : s t r i n g) {

r e turn (word . charAt (0) . toUpperCase () + word
. s l i c e (1)) ;

}) . j o i n (’ ’) ;
}

</ script>

222

<div class=” f l e x f l e x −c o l ”>
<input type=” text ”
name=” area ”
class=”p−3 rounded”
autocomplete=” o f f ”
p l a c eho l d e r={” Search ” + t i t l e C a s e (f i l t e r)}
on : input={e => autoComplete (e . t a r g e t . va lue)}
on : f o cus={onFocus}
on : b lur={onBlur}>
{# i f i sFocused == true }

<div class=”bg−white abso lu t e mt−12 w−52 b lock ”
>
{# i f r e s u l t s == true }

{#each s u g g e s t i o n s as sugge s t i on }
<a href={ ’/ va lua t i on / ’ + sugge s t i on

[0] } class=” pl −2 hover : bg−gray
−300 b lock ”>
{ sugge s t i on [0] }
<span class=”bg−blue −100 text−

blue −800 text−xs font−medium
 mr−2 px−2.5 py−0.5 rounded”
>{ sugge s t i on [1] }

{/ each}

{ : e l s e }
<p class=”ml−2”>No Resu l t s</p>

{/ i f }
</div>

{/ i f }
</div>

5.5.17 valuation/+page.svelte

<script lang=’ ts ’>
import SearchBar from ’ $ l i b /components/

SearchBar . s v e l t e ’ ;
</ script>

223

<s v e l t e :head>
<t i t l e>House Stat s | House Lookup</ t i t l e>

</ s v e l t e :head>
<div class=” f l e x j u s t i f y −c en te r items−c en te r max−w−

s c r e en ”>
<div class=”−mt−28”>

<p class=” text −3x l ”>Enter Postcode
Below</p>

<SearchBar f i l t e r=” postcode ”/>
</div>

</div>

5.5.18 valuation/[postcode]/+page.svelte

<script lang=’ ts ’>
import type { PageData } from ’ . / $types ’ ;

export l e t data : PageData ;
</ script>

<div class=”md:mx−24 my−8”>
<a href=”/ va lua t i on ” class=” bg−white p−2

rounded text−blue −600”>&l t ; Back
<div class=” r e l a t i v e over f low−x−auto shadow−md

sm : rounded−l g ”>
<table class=”w− f u l l text−sm text− l e f t

text−gray −500 dark : text−gray −400”>
<caption class=”p−5 text−x l

font−semibold text− l e f t text
−gray −900 bg−white dark : text
−white dark : bg−gray −800”>

{data . postcode .
toUpperCase () }

<p class=”mt−1 text−sm
font−normal text−
gray −500 dark : text−
gray −400”>Al l o f the

224

houses with the
postcode {data .
postcode . toUpperCase
() } .</p>

</caption>
<thead class=” text−xs text−gray

−700 uppercase bg−gray −50
dark : bg−gray −700 dark : text−
gray −400”>

<tr>
<th scope=” c o l ”

class=”px−6
 py−3”> SAON
, PAON </th>

<th scope=” c o l ”
class=”px−6

 py−3”>
S t r e e t </th>

<th scope=” c o l ”
class=”px−6

 py−3”> Town
</th>

<th scope=” c o l ”
class=”px−6

 py−3”>
County </th>

<th scope=” c o l ”
class=”px−6

 py−3”>
Postcode </
th>

<th scope=” c o l ”
class=”px−6

 py−3”>
Action </th>

</ tr>
</thead>
<tbody>

225

{#each data . data as
house}

<tr class=”bg−
white border
−b dark : bg−
gray −900
dark : border−
gray −700”>

<th
scope
=”
row”

class
=”px
−6
py−4

font
−
medium

text
−
gray
−900

whitespace
−
nowrap

dark
:
text
−
white
”>

226

{
house
[2] } {
house
[1]

!=

’ ’

&&

house
[2]

!=

’ ’

?

’ , ’

:

’ ’}

{
house
[1] }

</th>
<td

class
=”px
−6
py−4
”>

227

{
house
[4] }

</td>
<td

class
=”px
−6
py−4
”>

{
house
[5] }

</td>
<td

class
=”px
−6
py−4
”>

{
house
[6] }

</td>
<td

class
=”px
−6
py−4
”>

{
house
[3] }

</td>

228

<td
class
=”px
−6
py−4
”>

<
a

href
=
”
/
va lua t i on
/{
data
.
postcode
.
toUpperCase
()
}/{
house
[1]}/{
house
[2] }
”

class
=
”
font
−
medium

text
−
blue

229

−600

dark
:
text
−
blue
−500

hover
:
unde r l i n e
”
>
View
<
/
a
>

</td>
</ tr>

{/ each}
</tbody>

</ table>
</div>

</div>

5.5.19 valuation/[postcode]/+page.ts

import { e r r o r } from ’ @ s v e l t e j s / k i t ’ ;
import type { PageLoad } from ’ . / $types ’ ;

export const load = (async ({ params }) => {
l e t postcode : s t r i n g = params . postcode ;

const re sponse = await f e t c h (’ https : // api .
house s ta t s . co . uk/ api /v1/ f i n d / ’ + postcode .

230

toUpperCase ()) ;
const data = await re sponse . j son () ;
i f (r e sponse . s t a t u s == 200) {

r e turn {
data : data . r e s u l t s ,
postcode : postcode

}
} e l s e {

throw e r r o r (404 , ’No Postcode Found ’) ;
}

}) s a t i s f i e s PageLoad ;

231

